TOPICS
Search

Search Results for ""


8271 - 8280 of 13135 for BASIC ALGEBRASearch Results
Let S be a mathematical statement, then the Iverson bracket is defined by [S]={0 if S is false; 1 if S is true, (1) and corresponds to the so-called characteristic function. ...
The Jackson-Slater identity is the q-series identity of Rogers-Ramanujan-type given by sum_(k=0)^(infty)(q^(2k^2))/((q)_(2k)) = ...
If, after constructing a difference table, no clear pattern emerges, turn the paper through an angle of 60 degrees and compute a new table. If necessary, repeat the process. ...
The q-hypergeometric function identity _rphi_s^'[a,qsqrt(a),-qsqrt(a),1/b,1/c,1/d,1/e,1/f; sqrt(a),-sqrt(a),abq,acq,adq,aeq,afq] ...
Jacobi-Gauss quadrature, also called Jacobi quadrature or Mehler quadrature, is a Gaussian quadrature over the interval [-1,1] with weighting function ...
(1) or (2) The solutions are Jacobi polynomials P_n^((alpha,beta))(x) or, in terms of hypergeometric functions, as y(x)=C_1_2F_1(-n,n+1+alpha+beta,1+alpha,1/2(x-1)) ...
Denoted zn(u,k) or Z(u). Z(phi|m)=E(phi|m)-(E(m)F(phi|m))/(K(m)), where phi is the Jacobi amplitude, m is the parameter, and F(phi|m) and K(m) are elliptic integrals of the ...
The Jacobsthal polynomials are the W-polynomial obtained by setting p(x)=1 and q(x)=2x in the Lucas polynomial sequence. The first few Jacobsthal polynomials are J_1(x) = 1 ...
The Janko-Kharaghani-Tonchev graph is a strongly regular graph on 324 vertices and 24786 edges. It has regular parameters (nu,k,lambda,mu)=(324,153,72,72). It is implemented ...
The Janko-Kharaghani graphs are two strongly regular graph on 936 and 1800 vertices. They have regular parameters (nu,k,lambda,mu)=(936,375,150,150) and (1800,1029,588,588), ...
1 ... 825|826|827|828|829|830|831 ... 1314 Previous Next

...