Search Results for ""
81 - 90 of 13135 for BASIC ALGEBRASearch Results

Let A be an involutive algebra over the field C of complex numbers with involution xi|->xi^♭. Then A is a right Hilbert algebra if A has an inner product <·,·> satisfying: 1. ...
A Lie algebra over a field of characteristic zero is called semisimple if its Killing form is nondegenerate. The following properties can be proved equivalent for a ...
Let A be an involutive algebra over the field C of complex numbers with involution xi|->xi^♯. Then A is a modular Hilbert algebra if A has an inner product <··> and a ...
A representation of a Lie algebra g is a linear transformation psi:g->M(V), where M(V) is the set of all linear transformations of a vector space V. In particular, if V=R^n, ...
Let U=(U,<··>) be a T2 associative inner product space over the field C of complex numbers with completion H, and assume that U comes with an antilinear involution xi|->xi^* ...
Let S be a semigroup and alpha a positive real-valued function on S such that alpha(st)<=alpha(s)alpha(t) (s,t in S). If l^1(S,alpha) is the set of all complex-valued ...
Let H be a complex Hilbert space, and define a nest as a set N of closed subspaces of H satisfying the conditions: 1. 0,H in N, 2. If N_1,N_2 in N, then either N_1 subset= ...
The commutator series of a Lie algebra g, sometimes called the derived series, is the sequence of subalgebras recursively defined by g^(k+1)=[g^k,g^k], (1) with g^0=g. The ...
The lower central series of a Lie algebra g is the sequence of subalgebras recursively defined by g_(k+1)=[g,g_k], (1) with g_0=g. The sequence of subspaces is always ...
A Lie algebra over an algebraically closed field is called exceptional if it is constructed from one of the root systems E_6, E_7, E_8, F_4, and G_2 by the Chevalley ...

...