TOPICS
Search

Search Results for ""


101 - 110 of 1412 for Aperys ConstantSearch Results
Let f(z) be an entire function such that f(n) is an integer for each positive integer n. Then Pólya (1915) showed that if lim sup_(r->infty)(lnM_r)/r<ln2=0.693... (1) (OEIS ...
The Feller-Tornier constant is the density of integers that have an even number of prime factors p_i^(a_i) with a_1>1 in their prime factorization. It is given by ...
The Zolotarev-Schur constant is given by sigma = 1/(c^2)[1-(E(c))/(K(c))]^2 (1) = 0.3110788667048... (2) (OEIS A143295), where K(c) is a complete elliptic integral of the ...
Pythagoras's constant sqrt(2) has decimal expansion sqrt(2)=1.4142135623... (OEIS A000129), It was computed to 2000000000050 decimal digits by A. J. Yee on Feb. 9, 2012. The ...
Theodorus's constant sqrt(3) has decimal expansion sqrt(3)=1.732050807... (OEIS A002194). It was computed to 10^(10) decimal digits by E. Weisstein on Jul. 23, 2013. The ...
The twin primes constant Pi_2 (sometimes also denoted C_2) is defined by Pi_2 = product_(p>2; p prime)[1-1/((p-1)^2)] (1) = product_(p>2; p prime)(p(p-2))/((p-1)^2) (2) = ...
The Goh-Schmutz constant is defined by the integrals C = int_0^infty(ln(1+t))/(e^t-1)dt (1) = int_0^inftyln[1-ln(1-e^(-t))]dt (2) = ...
The Glaisher-Kinkelin constant A is defined by lim_(n->infty)(H(n))/(n^(n^2/2+n/2+1/12)e^(-n^2/4))=A (1) (Glaisher 1878, 1894, Voros 1987), where H(n) is the hyperfactorial, ...
E. Pegg Jr. (pers. comm., Nov. 8, 2004) found an approximation to Apéry's constant zeta(3) given by zeta(3) approx 10+zeta(16)-sqrt(96), (1) which is good to 6 digits. M. ...
The Heath-Brown-Moroz constant is defined by C_(Heath-Brown-Moroz) = product_(p)(1-1/p)^7(1+(7p+1)/(p^2)) (1) = 0.00131764115... (2) (OEIS A118228), where the product is ...
1 ... 8|9|10|11|12|13|14 ... 142 Previous Next

...