Search Results for ""
8201 - 8210 of 13135 for Analytic GeometrySearch Results
The orthogonal polynomials defined by c_n^((mu))(x) = _2F_0(-n,-x;;-mu^(-1)) (1) = ((-1)^n)/(mu^n)(x-n+1)_n_1F_1(-n;x-n+1;mu), (2) where (x)_n is the Pochhammer symbol ...
A check which can be used to verify correct computations in a table of grouped classes. For example, consider the following table with specified class limits and frequencies ...
A Gaussian quadrature-like formula over the interval [-1,1] which has weighting function W(x)=x. The general formula is int_(-1)^1xf(x)dx=sum_(i=1)^nw_i[f(x_i)-f(-x_i)]. n ...
A number of spellings of "Chebyshev" (which is the spelling used exclusively in this work) are commonly found in the literature. These include Tchebicheff, Čebyšev, ...
Using a Chebyshev polynomial of the first kind T(x), define c_j = 2/Nsum_(k=1)^(N)f(x_k)T_j(x_k) (1) = 2/Nsum_(k=1)^(N)f[cos{(pi(k-1/2))/N}]cos{(pij(k-1/2))/N}. (2) Then f(x) ...
The constants lambda_(m,n)=inf_(r in R_(m,n))sup_(x>=0)|e^(-x)-r(x)|, where r(x)=(p(x))/(q(x)), p and q are mth and nth order polynomials, and R_(m,n) is the set of all ...
Apply Markov's inequality with a=k^2 to obtain P[(x-mu)^2>=k^2]<=(<(x-mu)^2>)/(k^2)=(sigma^2)/(k^2). (1) Therefore, if a random variable x has a finite mean mu and finite ...
A Gaussian quadrature-like formula for numerical estimation of integrals. It uses weighting function W(x)=1 in the interval [-1,1] and forces all the weights to be equal. The ...
There are at least two theorems known as Chebyshev's theorem. The first is Bertrand's postulate, proposed by Bertrand in 1845 and proved by Chebyshev using elementary methods ...
Several different types of checkerboards are used in different variants of the game of checkers. The usual checkerboard is the one used in so-called "pool checkers," also ...
...
View search results from all Wolfram sites (20625 matches)

