Search Results for ""
321 - 330 of 13135 for Analytic GeometrySearch Results
The modular equation of degree n gives an algebraic connection of the form (K^'(l))/(K(l))=n(K^'(k))/(K(k)) (1) between the transcendental complete elliptic integrals of the ...
A function is said to be modular (or "elliptic modular") if it satisfies: 1. f is meromorphic in the upper half-plane H, 2. f(Atau)=f(tau) for every matrix A in the modular ...
A problem is assigned to the NP (nondeterministic polynomial time) class if it is solvable in polynomial time by a nondeterministic Turing machine. A P-problem (whose ...
Newton's iteration is an algorithm for computing the square root sqrt(n) of a number n via the recurrence equation x_(k+1)=1/2(x_k+n/(x_k)), (1) where x_0=1. This recurrence ...
Let K be a field of arbitrary characteristic. Let v:K->R union {infty} be defined by the following properties: 1. v(x)=infty<=>x=0, 2. v(xy)=v(x)+v(y) forall x,y in K, and 3. ...
product_(k=1)^(infty)(1-x^k) = sum_(k=-infty)^(infty)(-1)^kx^(k(3k+1)/2) (1) = 1+sum_(k=1)^(infty)(-1)^k[x^(k(3k-1)/2)+x^(k(3k+1)/2)] (2) = (x)_infty (3) = ...
d_n=p_(n+1)-p_n. (1) The first few values are 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, ... (OEIS A001223). Rankin has shown that d_n>(clnnlnlnnlnlnlnlnn)/((lnlnlnn)^2) ...
The pseudosquare L_p modulo the odd prime p is the least nonsquare positive integer that is congruent to 1 (mod 8) and for which the Legendre symbol (L_p/q)=1 for all odd ...
A round number is a number that is the product of a considerable number of comparatively small factors (Hardy 1999, p. 48). Round numbers are very rare. As Hardy (1999, p. ...
In the most commonly used convention (e.g., Apostol 1967, pp. 205-207), the second fundamental theorem of calculus, also termed "the fundamental theorem, part II" (e.g., ...
...
View search results from all Wolfram sites (20625 matches)

