Search Results for ""
151 - 160 of 13135 for Analytic GeometrySearch Results
The Andrews-Gordon identity (Andrews 1974) is the analytic counterpart of Gordon's combinatorial generalization of the Rogers-Ramanujan identities (Gordon 1961). It has a ...
Let f(x,y)=u(x,y)+iv(x,y), (1) where z=x+iy, (2) so dz=dx+idy. (3) The total derivative of f with respect to z is then (df)/(dz) = ...
If f(z) is analytic in some simply connected region R, then ∮_gammaf(z)dz=0 (1) for any closed contour gamma completely contained in R. Writing z as z=x+iy (2) and f(z) as ...
The constant a_(-1) in the Laurent series f(z)=sum_(n=-infty)^inftya_n(z-z_0)^n (1) of f(z) about a point z_0 is called the residue of f(z). If f is analytic at z_0, its ...
If a complex function is analytic at all finite points of the complex plane C, then it is said to be entire, sometimes also called "integral" (Knopp 1996, p. 112). Any ...
There are a number of formulas variously known as Hurwitz's formula. The first is zeta(1-s,a)=(Gamma(s))/((2pi)^s)[e^(-piis/2)F(a,s)+e^(piis/2)F(-a,s)], where zeta(z,a) is a ...
Cubic lattice sums include the following: b_2(2s) = sum^'_(i,j=-infty)^infty((-1)^(i+j))/((i^2+j^2)^s) (1) b_3(2s) = ...
Let s=1/(sqrt(2pi))[Gamma(1/4)]^2=5.2441151086... (1) (OEIS A064853) be the arc length of a lemniscate with a=1. Then the lemniscate constant is the quantity L = 1/2s (2) = ...
Every nonconstant entire function attains every complex value with at most one exception (Henrici 1988, p. 216; Apostol 1997). Furthermore, every analytic function assumes ...
A recursive sequence {f(n)}_n, also known as a recurrence sequence, is a sequence of numbers f(n) indexed by an integer n and generated by solving a recurrence equation. The ...
...
View search results from all Wolfram sites (20625 matches)

