Search Results for ""
661 - 670 of 3358 for Ackermann FunctionSearch Results
![](/common/images/search/spacer.gif)
Given a Poisson distribution with a rate of change lambda, the distribution function D(x) giving the waiting times until the hth Poisson event is D(x) = ...
The nontrivial zeros of the Riemann zeta function correspond to the eigenvalues of some Hermitian operator (Derbyshire 2004, pp. 277-278).
Polynomials M_k(x) which form the associated Sheffer sequence for f(t)=(e^t-1)/(e^t+1) (1) and have the generating function sum_(k=0)^infty(M_k(x))/(k!)t^k=((1+t)/(1-t))^x. ...
The second-order ordinary differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)-(x^2+n^2)y=0. (1) The solutions are the modified Bessel functions of the first and second kinds, ...
The theta series of a lattice is the generating function for the number of vectors with norm n in the lattice. Theta series for a number of lattices are implemented in the ...
Special functions which arise as solutions to second order ordinary differential equations are commonly said to be "of the first kind" if they are nonsingular at the origin, ...
A class of formal series expansions in derivatives of a distribution Psi(t) which may (but need not) be the normal distribution function Phi(t)=1/(sqrt(2pi))e^(-t^2/2) (1) ...
A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x=a is given by (1) ...
Every nonconstant entire function attains every complex value with at most one exception (Henrici 1988, p. 216; Apostol 1997). Furthermore, every analytic function assumes ...
The operator representing the computation of a derivative, D^~=d/(dx), (1) sometimes also called the Newton-Leibniz operator. The second derivative is then denoted D^~^2, the ...
![](/common/images/search/spacer.gif)
...