Search Results for ""
2031 - 2040 of 3358 for Ackermann FunctionSearch Results
The Gregory series is a pi formula found by Gregory and Leibniz and obtained by plugging x=1 into the Leibniz series, pi/4=sum_(k=1)^infty((-1)^(k+1))/(2k-1)=1-1/3+1/5-... ...
Guy's conjecture, which has not yet been proven or disproven, states that the graph crossing number for a complete graph K_n is ...
The bound for the number of colors which are sufficient for map coloring on a surface of genus g, gamma(g)=|_1/2(7+sqrt(48g+1))_| is the best possible, where |_x_| is the ...
A polygonal number and 6-polygonal number of the form n(2n-1). The first few are 1, 6, 15, 28, 45, ... (OEIS A000384). The generating function for the hexagonal numbers is ...
A number n is called k-hyperperfect if n = 1+ksum_(i)d_i (1) = 1+k[sigma(n)-n-1], (2) where sigma(n) is the divisor function and the summation is over the proper divisors ...
An interior point method is a linear or nonlinear programming method (Forsgren et al. 2002) that achieves optimization by going through the middle of the solid defined by the ...
Define the juggler sequence for a positive integer a_1=n as the sequence of numbers produced by the iteration a_(k+1)={|_a_k^(1/2)_| for even a_k; |_a_k^(3/2)_| for odd a_k, ...
Also called Radau quadrature (Chandrasekhar 1960). A Gaussian quadrature with weighting function W(x)=1 in which the endpoints of the interval [-1,1] are included in a total ...
Given a map with genus g>0, Heawood showed in 1890 that the maximum number N_u of colors necessary to color a map (the chromatic number) on an unbounded surface is N_u = ...
The maximum leaf number l(G) of a graph G is the largest number of tree leaves in any of its spanning trees. (The corresponding smallest number of leaves is known as the ...
...
View search results from all Wolfram sites (414562 matches)

