Search Results for ""
491 - 500 of 3430 for 6Search Results
Let Q(x)=Q(x_1,x_2,...,x_n) be an integer-valued n-ary quadratic form, i.e., a polynomial with integer coefficients which satisfies Q(x)>0 for real x!=0. Then Q(x) can be ...
The inverse function of the Gudermannian y=gd^(-1)phi gives the vertical position y in the Mercator projection in terms of the latitude phi and may be defined for 0<=x<pi/2 ...
(1) or (2) The solutions are Jacobi polynomials P_n^((alpha,beta))(x) or, in terms of hypergeometric functions, as y(x)=C_1_2F_1(-n,n+1+alpha+beta,1+alpha,1/2(x-1)) ...
The complex second-order ordinary differential equation x^2y^('')+xy^'-(ix^2+nu^2)y=0 (1) (Abramowitz and Stegun 1972, p. 379; Zwillinger 1997, p. 123), whose solutions can ...
The kiss surface is the quintic surface of revolution given by the equation x^2+y^2=(1-z)z^4 (1) that is closely related to the ding-dong surface. It is so named because the ...
Let alpha(x) be a step function with the jump j(x)=(N; x)p^xq^(N-x) (1) at x=0, 1, ..., N, where p>0,q>0, and p+q=1. Then the Krawtchouk polynomial is defined by ...
Given an m×n matrix A and a p×q matrix B, their Kronecker product C=A tensor B, also called their matrix direct product, is an (mp)×(nq) matrix with elements defined by ...
Consider the general system of two first-order ordinary differential equations x^. = f(x,y) (1) y^. = g(x,y). (2) Let x_0 and y_0 denote fixed points with x^.=y^.=0, so ...
A lobster graph, lobster tree, or simply "lobster," is a tree having the property that the removal of leaf nodes leaves a caterpillar graph (Gallian 2007). The numbers of ...
The Lucas polynomials are the w-polynomials obtained by setting p(x)=x and q(x)=1 in the Lucas polynomial sequence. It is given explicitly by ...
...
View search results from all Wolfram sites (292238 matches)

