Search Results for ""
431 - 440 of 7050 for 3Search Results
![](/common/images/search/spacer.gif)
The d-analog of a complex number s is defined as [s]_d=1-(2^d)/(s^d) (1) (Flajolet et al. 1995). For integer n, [2]!=1 and [n]_d! = [3][4]...[n] (2) = ...
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
To define a recurring digital invariant of order k, compute the sum of the kth powers of the digits of a number n. If this number n^' is equal to the original number n, then ...
Schur's partition theorem lets A(n) denote the number of partitions of n into parts congruent to +/-1 (mod 6), B(n) denote the number of partitions of n into distinct parts ...
A number of the form n^...^_()_(n)n, where Knuth up-arrow notation has been used. The first few Ackermann numbers are 1^1=1, 2^^2=4, and ...
Given a positive integer m>1, let its prime factorization be written m=p_1^(a_1)p_2^(a_2)p_3^(a_3)...p_k^(a_k). (1) Define the functions h(n) and H(n) by h(1)=1, H(1)=1, and ...
The central difference for a function tabulated at equal intervals f_n is defined by delta(f_n)=delta_n=delta_n^1=f_(n+1/2)-f_(n-1/2). (1) First and higher order central ...
The polar curve r=1+2cos(2theta) (1) that can be used for angle trisection. It was devised by Ceva in 1699, who termed it the cycloidum anomalarum (Loomis 1968, p. 29). It ...
The finite group C_2×C_6 is the finite group of order 12 that is the group direct product of the cyclic group C2 and cyclic group C6. It is one of the two Abelian groups of ...
A fraction containing each of the digits 1 through 9 is called a pandigital fraction. The following table gives the number of pandigital fractions which represent simple unit ...
![](/common/images/search/spacer.gif)
...