TOPICS
Search

Search Results for ""


171 - 180 of 412 for 3D printingSearch Results
The hyperbolic sine integral, often called the "Shi function" for short, is defined by Shi(z)=int_0^z(sinht)/tdt. (1) The function is implemented in the Wolfram Language as ...
Let the values of a function f(x) be tabulated at points x_i equally spaced by h=x_(i+1)-x_i, so f_1=f(x_1), f_2=f(x_2), ..., f_4=f(x_4). Then Simpson's 3/8 rule ...
Take the Helmholtz differential equation del ^2F+k^2F=0 (1) in spherical coordinates. This is just Laplace's equation in spherical coordinates with an additional term, (2) ...
A solution to the spherical Bessel differential equation. The two types of solutions are denoted j_n(x) (spherical Bessel function of the first kind) or n_n(x) (spherical ...
The spherical Bessel function of the second kind, denoted y_nu(z) or n_nu(z), is defined by y_nu(z)=sqrt(pi/(2z))Y_(nu+1/2)(z), (1) where Y_nu(z) is a Bessel function of the ...
The spherical Hankel function of the first kind h_n^((1))(z) is defined by h_n^((1))(z) = sqrt(pi/(2z))H_(n+1/2)^((1))(z) (1) = j_n(z)+in_n(z), (2) where H_n^((1))(z) is the ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
The ordinary differential equation z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)), where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. ...
Toroidal functions are a class of functions also called ring functions that appear in systems having toroidal symmetry. Toroidal functions can be expressed in terms of the ...
The function defined by (1) (Heatley 1943; Abramowitz and Stegun 1972, p. 509), where _1F_1(a;b;z) is a confluent hypergeometric function of the first kind and Gamma(z) is ...
1 ... 15|16|17|18|19|20|21 ... 42 Previous Next

...