Wigner-Eckart Theorem

A theorem of fundamental importance in spectroscopy and angular momentum theory which provides both (1) an explicit form for the dependence of all matrix elements of irreducible tensors on the projection quantum numbers and (2) a formal expression of the conservation laws of angular momentum (Rose 1995).

The theorem states that the dependence of the matrix element (j^'m^'|T_(LM)|jm) on the projection quantum numbers is entirely contained in the Wigner 3j-symbol (or, equivalently, the Clebsch-Gordan coefficient), given by


where C(jLj^';mMm^') is a Clebsch-Gordan coefficient and T_(LM) is a set of tensor operators (Rose 1995, p. 85).

See also

Clebsch-Gordan Coefficient, Wigner 3j-Symbol

Explore with Wolfram|Alpha


Cohen-Tannoudji, C.; Diu, B.; and Laloë, F. "Vector Operators: The WIgner-Eckart Theorem." Complement D_X in Quantum Mechanics, Vol. 2. New York: Wiley, pp. 1048-1058, 1977.Eckart, C. "The Application of Group Theory to the Quantum Dynamics of Monatomic Systems." Rev. Mod. Phys. 2, 305-380, 1930.Edmonds, A. R. Angular Momentum in Quantum Mechanics, 2nd ed., rev. printing. Princeton, NJ: Princeton University Press, 1968.Gordy, W. and Cook, R. L. Microwave Molecular Spectra, 3rd ed. New York: Wiley, p. 807, 1984.Messiah, A. "Representation of Irreducible Tensor Operators: Wigner-Eckart Theorem." §32 in Quantum Mechanics, Vol. 2. Amsterdam, Netherlands: North-Holland, pp. 573-575, 1962.Rose, M. E. "The Wigner-Eckart Theorem." §19 in Elementary Theory of Angular Momentum. New York: Dover, pp. 85-94, 1995.Shore, B. W. and Menzel, D. H. "Tensor Operators and the Wigner-Eckart Theorem." §6.4 in Principles of Atomic Spectra. New York: Wiley, pp. 285-294, 1968.Wigner, E. P. "Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen." Z. Physik 43, 624-652, 1927.Wigner, E. P. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, expanded and improved ed. New York: Academic Press, 1959.Wybourne, B. G. Symmetry Principles and Atomic Spectroscopy. New York: Wiley, pp. 89 and 93-96, 1970.

Referenced on Wolfram|Alpha

Wigner-Eckart Theorem

Cite this as:

Weisstein, Eric W. "Wigner-Eckart Theorem." From MathWorld--A Wolfram Web Resource.

Subject classifications