A theorem of fundamental importance in spectroscopy and angular momentum theory which provides both (1) an explicit form for the dependence of all matrix elements of irreducible tensors on the projection quantum numbers and (2) a formal expression of the conservation laws of angular momentum (Rose 1995).
The theorem states that the dependence of the matrix element on the projection quantum numbers is entirely
contained in the Wigner 3j -symbol (or,
equivalently, the Clebsch-Gordan coefficient ),
given by
where
is a Clebsch-Gordan coefficient and
is a set of tensor operators (Rose 1995, p. 85).
See also Clebsch-Gordan Coefficient ,
Wigner 3j -Symbol
Explore with Wolfram|Alpha
References Cohen-Tannoudji, C.; Diu, B.; and Laloë, F. "Vector Operators: The WIgner-Eckart Theorem." Complement in Quantum
Mechanics, Vol. 2. New York: Wiley, pp. 1048-1058, 1977. Eckart,
C. "The Application of Group Theory to the Quantum Dynamics of Monatomic Systems."
Rev. Mod. Phys. 2 , 305-380, 1930. Edmonds, A. R. Angular
Momentum in Quantum Mechanics, 2nd ed., rev. printing. Princeton, NJ: Princeton
University Press, 1968. Gordy, W. and Cook, R. L. Microwave
Molecular Spectra, 3rd ed. New York: Wiley, p. 807, 1984. Messiah,
A. "Representation of Irreducible Tensor Operators: Wigner-Eckart Theorem."
§32 in Quantum
Mechanics, Vol. 2. Amsterdam, Netherlands: North-Holland, pp. 573-575,
1962. Rose, M. E. "The Wigner-Eckart Theorem." §19
in Elementary
Theory of Angular Momentum. New York: Dover, pp. 85-94, 1995. Shore,
B. W. and Menzel, D. H. "Tensor Operators and the Wigner-Eckart Theorem."
§6.4 in Principles
of Atomic Spectra. New York: Wiley, pp. 285-294, 1968. Wigner,
E. P. "Einige Folgerungen aus der Schrödingerschen Theorie für
die Termstrukturen." Z. Physik 43 , 624-652, 1927. Wigner,
E. P. Group
Theory and Its Application to the Quantum Mechanics of Atomic Spectra, expanded and
improved ed. New York: Academic Press, 1959. Wybourne, B. G.
Symmetry
Principles and Atomic Spectroscopy. New York: Wiley, pp. 89 and 93-96,
1970. Referenced on Wolfram|Alpha Wigner-Eckart Theorem
Cite this as:
Weisstein, Eric W. "Wigner-Eckart Theorem."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/Wigner-EckartTheorem.html
Subject classifications