The Weierstrass substitution is the trigonometric substitution which transforms an integral of the form
into one of the form
According to Spivak (2006, pp. 382-383), this is undoubtably the world's sneakiest substitution.
The Weierstrass substitution can also be useful in computing a Gröbner basis to eliminate trigonometric functions from a system of equations (Trott
2006, p. 39).
See also Gröbner Basis ,
Half-Angle Formulas ,
Hyperbolic Substitution ,
Trigonometric Substitution
Explore with Wolfram|Alpha
References Anton, H. Calculus: A New Horizon, 6th ed. New York: Wiley, pp. 518-519, 1999. Spivak,
M. Calculus,
3rd ed. Cambridge, England: Cambridge University Press, 2006. Stewart,
J. Calculus:
Early Transcendentals, 2d ed. Brooks/Cole, p. 439, 1991. Trott,
M. The
Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2006. http://www.mathematicaguidebooks.org/ . Referenced
on Wolfram|Alpha Weierstrass Substitution
Cite this as:
Weisstein, Eric W. "Weierstrass Substitution."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/WeierstrassSubstitution.html
Subject classifications