TOPICS
Search

Uncorrelated Numbers


A sequence of numbers alpha_n is said to be uncorrelated if it satisfies

 lim_(n->infty)1/(2n)sum_(m=-n)^nalpha_m^2=1
 lim_(n->infty)1/(2n)sum_(m=-n)^nalpha_malpha_(k+m)=0

for k!=0.


See also

Wiener Numbers

Explore with Wolfram|Alpha

References

Papoulis, A. The Fourier Integral and Its Applications. New York: McGraw-Hill, 1962.

Referenced on Wolfram|Alpha

Uncorrelated Numbers

Cite this as:

Weisstein, Eric W. "Uncorrelated Numbers." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/UncorrelatedNumbers.html

Subject classifications