Let ,
, ...,
be distinct primitive elements of a two-dimensional lattice
such that
for
, ...,
. Each collection
then forms a set of rays of a unique
complete fan in
,
and therefore determines a two-dimensional toric variety
.
Toric Variety
See also
Algebraic VarietyExplore with Wolfram|Alpha
References
Danilov, V. I. "The Geometry of Toric Varieties." Russ. Math. Surv. 33, 97-154, 1978.Fulton, W. Introduction to Toric Varieties. Princeton, NJ: Princeton University Press, 1993.Morelli, R. "Pick's Theorem and the Todd Class of a Toric Variety." Adv. Math. 100, 183-231, 1993.Oda, T. Convex Bodies and Algebraic Geometry. New York: Springer-Verlag, 1987.Pommersheim, J. E. "Toric Varieties, Lattice Points, and Dedekind Sums." Math. Ann. 295, 1-24, 1993.Referenced on Wolfram|Alpha
Toric VarietyCite this as:
Weisstein, Eric W. "Toric Variety." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ToricVariety.html