TOPICS
Search

Smarandache-Kurepa Function


Given the left factorial function

 Sigma(n)=sum_(k=1)^nk!,

SK(p) for p prime is the smallest integer n such that p|1+Sigma(n-1). The first few known values of SK(p) are 2, 4, 6, 6, 5, 7, 7, 12, 22, 16, 55, 54, 42, 24, ... for p=2, 5, 7, 11, 17, 19, 23, 31, 37, 41, 61, 71, 73, 89, .... The function SK(p) doe not exists for p=3, 13, 29, 43, 47, 53, 67, 79, 83, ....


See also

Left Factorial, Pseudosmarandache Function, Smarandache Ceil Function, Smarandache Function, Smarandache-Wagstaff Function

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Ashbacher, C. "Some Properties of the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Math. Informatics Quart. 7, 114-116, 1997.Mudge, M. "Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Smarandache Notions J. 7, 52-53, 1996.Mudge, M. "Introducing the Smarandache-Kurepa and Smarandache-Wagstaff Functions." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.

Referenced on Wolfram|Alpha

Smarandache-Kurepa Function

Cite this as:

Weisstein, Eric W. "Smarandache-Kurepa Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Smarandache-KurepaFunction.html

Subject classifications