TOPICS
Search

Seiberg-Witten Equations


The Seiberg-Witten equations are

D_Apsi=0
(1)
F_A^+=-tau(psi,psi),
(2)

where tau is the sesquilinear map tau:W^+×W^+->Lambda^+ tensor C.


See also

Witten's Equations

Explore with Wolfram|Alpha

References

Donaldson, S. K. "The Seiberg-Witten Equations and 4-Manifold Topology." Bull. Amer. Math. Soc. 33, 45-70, 1996.Marshakov, A. Seiberg-Witten Theory and Integrable Systems. Singapore: World Scientific, 1999.Morgan, J. W. The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. Princeton, NJ: Princeton University Press, 1996.

Referenced on Wolfram|Alpha

Seiberg-Witten Equations

Cite this as:

Weisstein, Eric W. "Seiberg-Witten Equations." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Seiberg-WittenEquations.html

Subject classifications