TOPICS
Search

Second-Order Eulerian Triangle


 1
1 2
1 8 6
1 22 58 24
1 52 328 444 120
1 114 1452 4400 3708 720
1 240 5610 32120 58140 33984 5040
(1)

The second-order Eulerian triangle (OEIS A008517) is the number triangle defined by the recurrence

 T(n,k)=(k+1)T(n-1,k)+(2n-k-1)T(n-1,k-1)
(2)

with initial conditions

 T(n,0)=1
(3)

and

 T(n,k)=0
(4)

for k>=n.


See also

Euler's Number Triangle, Number Triangle

Explore with Wolfram|Alpha

References

Gessel, I. and Stanley, R. P. "Stirling Polynomials." J. Combin. Theory A 24, 24-33, 1978.Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, p. 256, 1994.Munch, O. J. "Om potensproduktsummer." Nordisk Matematisk Tidskrift 7, 5-19, 1959.Sloane, N. J. A. Sequence A008517 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Second-Order Eulerian Triangle

Cite this as:

Weisstein, Eric W. "Second-Order Eulerian Triangle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Second-OrderEulerianTriangle.html

Subject classifications

Find out if you already have access to Wolfram tech through your organization
×