Schiffler Point


The concurrence S of the Euler lines E_n of the triangles DeltaXBC, DeltaXCA, DeltaXAB, and DeltaABC where X is the incenter. It has equivalent triangle center functions


and is Kimberling center X_(21) (Kimberling 1998, p. 70).

Explore with Wolfram|Alpha


Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle." Math. Mag. 67, 163-187, 1994.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Kimberling, C. "Schiffler Point.", C. "Encyclopedia of Triangle Centers: X(21)=Schiffler Point.", K. L. "On the Complement of the Schiffler Point." Forum Geometricorum 5, 249-254, 2005., K.; Veldkamp, G. R.; and van der Spek, W. A. "Problem 1018 and Solution." Crux Math. 12, 176-179, 1986.

Referenced on Wolfram|Alpha

Schiffler Point

Cite this as:

Weisstein, Eric W. "Schiffler Point." From MathWorld--A Wolfram Web Resource.

Subject classifications