It is possible to describe a set of positive integers that cannot be listed in a book containing a set of counting numbers on each consecutively numbered page. Another form of the paradox states that the set of all numerical functions is nondenumerable (Curry 1977).
Richard's Paradox
Explore with Wolfram|Alpha
References
Church, A. "A Bibliography of Symbolic Logic." J. Symb. Logic 1, 121-218, 1936.Curry, H. B. Foundations of Mathematical Logic. New York: Dover, p. 6, 1977.Erickson, G. W. and Fossa, J. A. Dictionary of Paradox. Lanham, MD: University Press of America, pp. 172-173, 1998.Richard, J. "Les principes des mathématiques et le problème des ensembles." Revue générale des sciences pures et appliquées 16, 541-543, 1905.Richard, J. "Lettre à Monsieur le rédacteur de la Revue générale des sciences." Acta Math. 30, 295-296, 1906.Richard, J. "Sur un paradoxe de la théorie des ensembles et sur l'axiome Zermelo." L'Enseignement math. 9, 94-98, 1907.Referenced on Wolfram|Alpha
Richard's ParadoxCite this as:
Weisstein, Eric W. "Richard's Paradox." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RichardsParadox.html