TOPICS

# Reciprocal Conjugation

Let and be points, neither of which lies on a sideline of , given in barycentric coordinates by and . The -reciprocal conjugate of is then the point

in barycentric coordinates.

The term "reciprocal conjugate" was introduced in Dean and van Lamoen (2001). Confusingly, the term has sometimes also been used to mean isoconjugation.

Isoconjugation

## Explore with Wolfram|Alpha

More things to try:

## References

Dean, K. R. and van Lamoen, F. M. "Geometric Construction of Reciprocal Conjugates." Forum Geom. 1, 115-120, 2001. http://forumgeom.fau.edu/FG2001volume1/FG200116index.html.Kimberling, C. "Glossary: A Support Pages for Encyclopedia Triangle Centers." http://faculty.evansville.edu/ck6/encyclopedia/glossary.html.van Lamoen, F. M. "Pl-Perpendicularity." Forum Geom. 1, 151-160, 2001. http://forumgeom.fau.edu/FG2001volume1/FG200122index.html.

## Referenced on Wolfram|Alpha

Reciprocal Conjugation

## Cite this as:

Weisstein, Eric W. "Reciprocal Conjugation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ReciprocalConjugation.html