The Randić index of a graph is defined as half the sum of the matrix elements of its Randić matrix. While the index was introduced to model the branching of the carbon-atom skeleton of alkanes (Randić 1975), it has proven to be usefully correlated with a variety of physico-chemical and pharmacological properties for many types of organic molecules (Zheng et al. 2023).
Randić Index
See also
Randić MatrixExplore with Wolfram|Alpha
References
Bozkurt, S. B. and Guüngör, A. D. "Randić Matrix and Randić Energy." MATCH Commun. Math. Comput. Chem. 64, 239-250, 2010.Bozkurt, S. B.; Guüngör, A. D.; and Gutman, I. "Randić Spectral Radius and Randić Energy." MATCH Commun. Math. Comput. Chem. 64, 321-334, 2010.Devillers, J. and Balaban, A. T. (Eds.). "The Zabgreb Indices." In Topological Indices and Related Descriptors in QSAR and QSPR. Amsterdam, Netherlands: Gordon and Breach, p. 31, 2000.Randić, M. "On Characterization of Molecular Branching." J. Amer. Chem. Soc. 97, 6609-6615, 1975.Rodríguez, J. A. "A Spectral Approach to the Randić Index." Linear Algebra Appl. 400, 339-344, 2005.Rodríguez, J. A. and Sigarreta, J. M. "On the Randić Index and Conditional Parameters of a Graph." MATCH Commun. Math. Comput. Chem. 54, 403-416, 2005.Zheng, R.; Su, P.; and Jin. S. "Arithmetic-Geometric Matrix of Graphs and Its Applications." Appl. Math. Comput. 42, 127764, 1-11, 2023.Cite this as:
Weisstein, Eric W. "Randić Index." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RandicIndex.html