TOPICS
Search

Petersen-Schoute Theorem


The Petersen-Schoute theorem is a beautiful general theorem of which the following two statements are special cases (Coxeter and Greitzer 1967, pp. 99-100).

1. If DeltaABC and DeltaA^'B^'C^' are two directly similar triangles, while DeltaAA^'A^(''), DeltaBB^'B^(''), and DeltaCC^'C^('') are three directly similar triangles, then DeltaA^('')B^('')C^('') is directly similar to DeltaABC.

2. When all the points P on AB are related by a similarity transformation to all the points P^' on A^'B^', the points dividing the segment PP^' in a given ratio are distinct and collinear, or else they coincide.


See also

Directly Similar, Similarity Transformation

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 95-100, 1967.Forder, H. G. Higher Course Geometry. Cambridge, England: Cambridge University Press, p. 53, 1931.Petersen, J. Methods and Theories for the Solution of Problems of Geometrical Constructions Applied to 410 Problems. New York: Stechert, p. 74, 1923. Reprinted in String Figures and Other Monographs. New York: Chelsea, 1960.

Referenced on Wolfram|Alpha

Petersen-Schoute Theorem

Cite this as:

Weisstein, Eric W. "Petersen-Schoute Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Petersen-SchouteTheorem.html

Subject classifications