The pentagrammic crossed antiprism is the uniform polyhedron with Maeder index 80 (Maeder 1997), Coxeter index 35 (Coxeter et
al. 1954), and Har'El index 5 (Har'El 1993). Its faces consist of two pentagrams
and 10 intersecting equilateral triangles ,
making it a (non-regular) dodecahedron .
It is implemented in the Wolfram Language
as PolyhedronData ["PentagrammicCrossedAntiprism" ].
Its dual polyhedron is the pentagrammic
concave deltohedron .
See also Antiprism ,
Pentagrammic Concave Deltohedron ,
Pentagrammic Antiprism ,
Pentagrammic Prism ,
Uniform
Polyhedron
Explore with Wolfram|Alpha
References Coxeter, H. S. M.; Longuet-Higgins, M. S.; and Miller, J. C. P. "Uniform Polyhedra." Phil. Trans. Roy.
Soc. London Ser. A 246 , 401-450, 1954. Har'El, Z. "Uniform
Solution for Uniform Polyhedra." Geom. Dedicata 47 , 57-110, 1993.
http://www.math.technion.ac.il/~rl/docs/uniform.pdf . Maeder,
R. E. "80: Pentagrammic Crossed Antipris." 1997. https://www.mathconsult.ch/static/unipoly/80.html . Referenced
on Wolfram|Alpha Pentagrammic Crossed Antiprism
Cite this as:
Weisstein, Eric W. "Pentagrammic Crossed Antiprism."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/PentagrammicCrossedAntiprism.html
Subject classifications