The parabolic cylinder differential equation is the second-order
ordinary differential equation 
(1)
  
 
whose solution is given by
(2)
  
 
where   is a parabolic
 cylinder function .
The generalized parabolic cylinder differential equation is the differential equation of the form
(3)
  
 
(Abramowitz and Stegun 1972, p. 686; Zwillinger 1995, p. 414; Zwillinger 1997, p. 126) whose solution can be expressed in terms of parabolic
 cylinder functions  as
(4)
  
 
where
(5)
  
 
 
See also Parabolic Cylinder Function ,
Parabolic Cylindrical Coordinates 
Explore with Wolfram|Alpha 
References Abramowitz, M. and Stegun, I. A. (Eds.). "Parabolic Cylinder Function." Ch. 19 in Handbook
 of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.  
 New York: Dover, pp. 685-700, 1972. Zwillinger, D. (Ed.). CRC
 Standard Mathematical Tables and Formulae.   Boca Raton, FL: CRC Press, p. 414,
 1995. Zwillinger, D. Handbook
 of Differential Equations, 3rd ed.   Boston, MA: Academic Press, p. 126,
 1997. Referenced on Wolfram|Alpha Parabolic Cylinder
 Differential Equation 
Cite this as: 
Weisstein, Eric W.  "Parabolic Cylinder Differential
Equation." From MathWorld  --A Wolfram Resource. https://mathworld.wolfram.com/ParabolicCylinderDifferentialEquation.html 
Subject classifications