TOPICS
Search

Only Critical Point in Town Test


OnlyCriticalPoint1
OnlyCriticalPoint2
PartialDerivative

If a univariate real function f(x) has a single critical point and that point is a local maximum, then f(x) has its global maximum there (Wagon 1991, p. 87). The test breaks downs for bivariate functions, but does hold for bivariate polynomials of degree <=4. Such exceptions include

z=3xe^y-x^3-e^(3y)
(1)
z=x^2(1+y)^3+y^2
(2)
z={(xy(x^2-y^2))/(x^2+y^2) for (x,y)!=(0,0); 0 for (x,y)=(0,0)
(3)

(Rosenholtz and Smylie 1985, Wagon 1991). Note that equation (3) has discontinuous partial derivatives z_(xy) and z_(yx), and z_(yx)(0,0)=1 and z_(xy)(0,0)=1.


See also

Critical Point, Global Maximum, Local Maximum, Partial Derivative

Explore with Wolfram|Alpha

References

Anton, H. Calculus: A New Horizon, 6th ed. New York: Wiley, 1999.Apostol, T. M.; Mugler, D. H.; Scott, D. R.; Sterrett, A. Jr.; and Watkins, A. E. A Century of Calculus, Part II: 1969-1991. Washington, DC: Math. Assoc. Amer., 1992.Ash, A. M. and Sexton, H. "A Surface with One Local Minimum." Math. Mag. 58, 147-149, 1985.Calvert, B. and Vamanamurthy, M. K. "Local and Global Extrema for Functions of Several Variables." J. Austral. Math. Soc. 29, 362-368, 1980.Davies, R. "Solution to Problem 1235." Math. Mag. 61, 59, 1988.Rosenholtz, I. and Smylie, L. "The Only Critical Point in Town Test." Math. Mag. 58, 149-150, 1985.Wagon, S. "Failure of the Only-Critical-Point-in-Town Test." §3.4 in Mathematica in Action. New York: W. H. Freeman, pp. 87-91 and 228, 1991.

Referenced on Wolfram|Alpha

Only Critical Point in Town Test

Cite this as:

Weisstein, Eric W. "Only Critical Point in Town Test." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/OnlyCriticalPointinTownTest.html

Subject classifications