TOPICS
Search

Neyman-Pearson Lemma


If there exists a critical region C of size alpha and a nonnegative constant k such that

 (product_(i=1)^(n)f(x_i|theta_1))/(product_(i=1)^(n)f(x_i|theta_0))>=k

for points in C and

 (product_(i=1)^(n)f(x_i|theta_1))/(product_(i=1)^(n)f(x_i|theta_0))<=k

for points not in C, then C is a best critical region of size alpha.


Explore with Wolfram|Alpha

References

Hoel, P. G.; Port, S. C.; and Stone, C. J. "Testing Hypotheses." Ch. 3 in Introduction to Statistical Theory. New York: Houghton Mifflin, pp. 56-67, 1971.

Referenced on Wolfram|Alpha

Neyman-Pearson Lemma

Cite this as:

Weisstein, Eric W. "Neyman-Pearson Lemma." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Neyman-PearsonLemma.html

Subject classifications