The negadecimal representation of a number  is its representation in base 
 (i.e., base negative 10). It is therefore
 given by the coefficients 
 in
| 
(1)
 | |||
| 
(2)
 | 
where ,
 1, ..., 9.
The negadecimal digits may be obtained with the Wolfram Language code
  Negadecimal[0] := {0}
  Negadecimal[i_] := Rest @ Reverse @
     Mod[NestWhileList[(# - Mod[#, 10])/-10&,
       i, # != 0& ], 10]
The following table gives the negadecimal representations for the first few integers (A039723).
| negadecimal | negadecimal | negadecimal | |||
| 1 | 1 | 11 | 191 | 21 | 181 | 
| 2 | 2 | 12 | 192 | 22 | 182 | 
| 3 | 3 | 13 | 193 | 23 | 183 | 
| 4 | 4 | 14 | 194 | 24 | 184 | 
| 5 | 5 | 15 | 195 | 25 | 185 | 
| 6 | 6 | 16 | 196 | 26 | 186 | 
| 7 | 7 | 17 | 197 | 27 | 187 | 
| 8 | 8 | 18 | 198 | 28 | 188 | 
| 9 | 9 | 19 | 199 | 29 | 189 | 
| 10 | 190 | 20 | 180 | 30 | 170 | 
The numbers having the same decimal and negadecimal representations are those which are sums of distinct powers of 100: 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 200, ... (OEIS A051022).
 
         
	    
	
    

