TOPICS
Search

Möbius-Kantor Configuration


Moebius-KantorConfiguration

The Möbius-Kantor configuration is the unique 8_3 configuration. It is transitive and self-dual. While it is realizable over the complex numbers, is cannot be realized over the real or rational numbers (Gropp 1997). Its incidence structure is illustrated above using a circle in addition to seven lines.

Its Levi graph is the Möbius-Kantor graph.


See also

Configuration, Möbius-Kantor Graph

Explore with Wolfram|Alpha

References

Aigner, M. Combinatorial Theory. Berlin: Springer-Verlag, p. 335, 1979.Coxeter, H. S. M. "Self-Dual Configurations and Regular Graphs." Bull. Amer. Math. Soc. 56, 413-455, 1950.Gropp, H. "Configurations and Their Realization." Discr. Math. 174, 137-151, 1997.Grünbaum, B. Configurations of Points and Lines. Providence, RI: Amer. Math. Soc., pp. 67-68, 2009.Pisanski, T. and Randić, M. "Bridges between Geometry and Graph Theory." In Geometry at Work: A Collection of Papers Showing Applications of Geometry (Ed. C. A. Gorini). Washington, DC: Math. Assoc. Amer., pp. 174-194, 2000.

Referenced on Wolfram|Alpha

Möbius-Kantor Configuration

Cite this as:

Weisstein, Eric W. "Möbius-Kantor Configuration." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Moebius-KantorConfiguration.html

Subject classifications