A Banach space is called minimal if every infinite-dimensional subspace of contains a subspace isomorphic to . An example of a minimal Banach space is the Banach space of all complex sequences converging to zero (taking the supremum norm).
Minimal Banach Space
See also
Banach SpaceThis entry contributed by Mohammad Sal Moslehian
Explore with Wolfram|Alpha
References
Johnson, W. B. and Lindenstrauss, J. (Eds.). Handbook of the Geometry of Banach Spaces, Vol. 1. Amsterdam, Netherlands: North-Holland, 2001.Referenced on Wolfram|Alpha
Minimal Banach SpaceCite this as:
Moslehian, Mohammad Sal. "Minimal Banach Space." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/MinimalBanachSpace.html