TOPICS
Search

Minimal Banach Space


A Banach space X is called minimal if every infinite-dimensional subspace Y of X contains a subspace Z isomorphic to X. An example of a minimal Banach space is the Banach space c_ degrees of all complex sequences converging to zero (taking the supremum norm).


See also

Banach Space

This entry contributed by Mohammad Sal Moslehian

Explore with Wolfram|Alpha

References

Johnson, W. B. and Lindenstrauss, J. (Eds.). Handbook of the Geometry of Banach Spaces, Vol. 1. Amsterdam, Netherlands: North-Holland, 2001.

Referenced on Wolfram|Alpha

Minimal Banach Space

Cite this as:

Moslehian, Mohammad Sal. "Minimal Banach Space." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/MinimalBanachSpace.html

Subject classifications