Let there be three polynomials ,
, and
with no common factors such that
Then the number of distinct roots of the three polynomials is one or more greater than their largest degree. The theorem was first proved by Stothers (1981).
Mason's theorem may be viewed as a very special case of a Wronskian estimate (Chudnovsky and Chudnovsky 1984). The corresponding Wronskian identity in the proof by Lang (1993) is
so if ,
, and
are linearly dependent, then so are
and
. More powerful Wronskian estimates with applications
toward Diophantine approximation of solutions of linear differential equations may
be found in Chudnovsky and Chudnovsky (1984) and Osgood (1985).
The rational function case of Fermat's last theorem follows trivially from Mason's theorem (Lang 1993, p. 195).