TOPICS
Search

Liouville's Equation


The second-order ordinary differential equation

 y^('')+g(y)y^('2)+f(x)y^'=0
(1)

is called Liouville's equation (Goldstein and Braun 1973; Zwillinger 1997, p. 124), as are the partial differential equations

 sum_(i=1)^nu_(x_ix_i)+e^(lambdau)=0
(2)

(Matsumo 1987; Zwillinger 1997, p. 133) and

 u_(xt)=e^(etau)
(3)

(Calogero and Degasperis 1982, p. 60; Zwillinger 1997, p. 133).


See also

Klein-Gordon Equation

Explore with Wolfram|Alpha

References

Calogero, F. and Degasperis, A. Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations. New York: North-Holland, p. 60, 1982.Goldstein, M. E. and Braun, W. H. Advanced Methods for the Solution of Differential Equations. NASA SP-316. Washington, DC: U.S. Government Printing Office, p. 98, 1973.Matsumo, Y. "Exact Solution for the Nonlinear Klein-Gordon and Liouville Equations in Four-Dimensional Euclidean Space." J. Math. Phys. 28, 2317-2322, 1987.Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, pp. 124 and 133, 1997.

Referenced on Wolfram|Alpha

Liouville's Equation

Cite this as:

Weisstein, Eric W. "Liouville's Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LiouvillesEquation.html

Subject classifications