The partial differential equation
|
(1)
|
where
|
(2)
|
(Krichever and Novikov 1980; Novikov 1999). Zwillinger (1997, p. 131) and Calogero and Degasperis (1982, p. 54) give the equation as
|
(3)
|
The modified Kadomtsev-Petviashvili equation is given by
|
(4)
|
(Clarkson 1986; Zwillinger 1997, p. 133).
See also
Kadomtsev-Petviashvili-Burgers Equation,
Korteweg-de Vries Equation,
Krichever-Novikov Equation
Explore with Wolfram|Alpha
References
Baker, H. F. Abelian Functions: Abel's Theorem and the Allied Theory, Including the Theory of the Theta
Functions. New York: Cambridge University Press, p. xix, 1995.Calogero,
F. and Degasperis, A. Spectral
Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations.
New York: North-Holland, 1982.Clarkson, P. A. "The Painlevé
Property, a Modified Boussinesq Equation and a Modified Kadomtsev-Petviashvili Equation."
Physica D 19, 447-450, 1986.Krichever, I. M. and
Novikov, S. P. "Holomorphic Bundles over Algebraic Curves, and Nonlinear
Equations." Russ. Math. Surv. 35, 53-80, 1980. English translation
of Uspekhi Mat. Nauk 35, 47-68, 1980.Novikov, D. P.
"Algebraic-Geometric Solutions of the Krichever-Novikov Equation." Theoret.
Math. Phys. 121, 1567-15773, 1999.Zwillinger, D. Handbook
of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 131,
1997.Referenced on Wolfram|Alpha
Kadomtsev-Petviashvili Equation
Cite this as:
Weisstein, Eric W. "Kadomtsev-Petviashvili Equation." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Kadomtsev-PetviashviliEquation.html
Subject classifications