TOPICS

# Jacobi Rotation Matrix

A matrix used in the Jacobi transformation method of diagonalizing matrices. The Jacobi rotation matrix contains 1s along the diagonal, except for the two elements in rows and columns and . In addition, all off-diagonal elements are zero except the elements and . The rotation angle for an initial matrix is chosen such that

Then the corresponding Jacobi rotation matrix which annihilates the off-diagonal element is

Jacobi Transformation

## Explore with Wolfram|Alpha

More things to try:

## References

Gentle, J. E. "Givens Transformations (Rotations)." §3.2.5 in Numerical Linear Algebra for Applications in Statistics. Berlin: Springer-Verlag, pp. 99-102, 1998.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Jacobi Transformation of a Symmetric Matrix." §11.1 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 456-462, 1992.

## Referenced on Wolfram|Alpha

Jacobi Rotation Matrix

## Cite this as:

Weisstein, Eric W. "Jacobi Rotation Matrix." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/JacobiRotationMatrix.html