Isoclinic Groups

Two groups G and H are said to be isoclinic if there are isomorphisms G/Z(G)->H/Z(H) and G^'->H^', where Z(G) is the group center of the group, which identify the two commutator maps.

Explore with Wolfram|Alpha


Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A. "Isoclinism." §6.7 in Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England: Clarendon Press, pp. xxiii-xxiv, 1985.

Referenced on Wolfram|Alpha

Isoclinic Groups

Cite this as:

Weisstein, Eric W. "Isoclinic Groups." From MathWorld--A Wolfram Web Resource.

Subject classifications