TOPICS
Search

Inverse Hilbert Transform


The Hilbert transform and inverse Hilbert transform are the integral transform

g(y)=H[f(x)]=1/piPVint_(-infty)^infty(f(x)dx)/(x-y)
(1)
f(x)=H^(-1)[g(y)]=-1/piPVint_(-infty)^infty(g(y)dy)/(y-x),
(2)

where the Cauchy principal value is taken in each of the integrals.

They will be implemented in a future version of the Wolfram Language as HilbertTransform[f, x, y] and InverseHilbertTransform[g, y, x], respectively.


See also

Hilbert Transform

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Inverse Hilbert Transform." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/InverseHilbertTransform.html

Subject classifications