TOPICS
Search

Immanant


For an n×n matrix, let S denote any permutation e_1, e_2, ..., e_n of the set of numbers 1, 2, ..., n, and let chi^((lambda))(S) be the character of the symmetric group corresponding to the partition (lambda). Then the immanant |a_(mn)|^((lambda)) is defined as

 |a_(mn)|^((lambda))=sumchi^((lambda))(S)P_S

where the summation is over the n! permutations of the symmetric group and

 P_S=a_(1e_1)a_(2e_2)...a_(ne_n).

See also

Determinant, Permanent

Explore with Wolfram|Alpha

References

Littlewood, D. E. and Richardson, A. R. "Group Characters and Algebra." Philos. Trans. Roy. Soc. London A 233, 99-141, 1934.Littlewood, D. E. and Richardson, A. R. "Immanants of Some Special Matrices." Quart. J. Math. (Oxford) 5, 269-282, 1934.Wybourne, B. G. "Immanants of Matrices." §2.19 in Symmetry Principles and Atomic Spectroscopy. New York: Wiley, pp. 12-13, 1970.

Referenced on Wolfram|Alpha

Immanant

Cite this as:

Weisstein, Eric W. "Immanant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Immanant.html

Subject classifications