TOPICS
Search

Hillam's Theorem


If f:[a,b]->[a,b] (where [a,b] denotes the closed interval from a to b on the real line) satisfies a Lipschitz condition with constant K, i.e., if

 |f(x)-f(y)|<=K|x-y|

for all x,y in [a,b], then the iteration scheme

 x_(n+1)=(1-lambda)x_n+lambdaf(x_n),

where lambda=1/(K+1), converges to a fixed point of f.


See also

Map Fixed Point

Explore with Wolfram|Alpha

References

Falkowski, B.-J. "On the Convergence of Hillam's Iteration Scheme." Math. Mag. 69, 299-303, 1996.Geist, R.; Reynolds, R.; and Suggs, D. "A Markovian Framework for Digital Halftoning." ACM Trans. Graphics 12, 136-159, 1993.Hillam, B. P. "A Generalization of Krasnoselski's Theorem on the Real Line." Math. Mag. 48, 167-168, 1975.Krasnoselski, M. A. "Two Remarks on the Method of Successive Approximations." Uspehi Math. Nauk (N. S.) 10, 123-127, 1955.

Referenced on Wolfram|Alpha

Hillam's Theorem

Cite this as:

Weisstein, Eric W. "Hillam's Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HillamsTheorem.html

Subject classifications