TOPICS
Search

Gordon Function


"Gordon function" is another name for the confluent hypergeometric function of the second kind, defined by

 G(a|c|z)=e^(ipia)(Gamma(c))/(Gamma(a)){(Gamma(1-c))/(Gamma(1-a))[e^(-pic)+(sin[pi(a-c)])/(sin(pia))]×_1F_1(a;c;z)-2(Gamma(c-1))/(Gamma(c-a))z^(1-c)_1F_1(a-c+1;2-c;z)},

where Gamma(x) is the gamma function and _1F_1(a;b;z) is the confluent hypergeometric function of the first kind.


See also

Confluent Hypergeometric Function of the Second Kind

Explore with Wolfram|Alpha

References

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 671-672, 1953.

Referenced on Wolfram|Alpha

Gordon Function

Cite this as:

Weisstein, Eric W. "Gordon Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GordonFunction.html

Subject classifications