TOPICS
Search

Gompertz Curve


The function defined by

 y=ab^(q^x).

It is used in actuarial science for specifying a simplified mortality law (Kenney and Keeping 1962, p. 241). Using s(x) as the probability that a newborn will achieve age x, the Gompertz law is

 s(x)=exp[-m(c^x-1)],

for c>1, x>=0 (Gompertz 1832).


See also

Law of Growth, Life Expectancy, Logistic Map, Makeham Curve, Population Growth

Explore with Wolfram|Alpha

References

Bowers, N. L. Jr.; Gerber, H. U.; Hickman, J. C.; Jones, D. A.; and Nesbitt, C. J. Actuarial Mathematics. Itasca, IL: Society of Actuaries, p. 71, 1997.Gompertz, B. "On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies." Phil. Trans. Roy. Soc. London 123, 513-585, 1832.Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, 1962.

Referenced on Wolfram|Alpha

Gompertz Curve

Cite this as:

Weisstein, Eric W. "Gompertz Curve." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GompertzCurve.html

Subject classifications