The Gauss-Kuzmin distribution is the distribution of occurrences of a positive integer
in the continued fraction of a random (or "generic")
real number.
Consider
defined for a real number by
(1)
(2)
so
is the fractional part of . This can be defined recursively through
(3)
and
(4)
with
and
simply the th
term of the continued fraction .
The distribution was considered by Gauss in a letter to Laplace dated
January 30, 1812. In this letter, Gauss said that he could prove by a simple argument
that if ,
sometimes denoted (Havil 2003, p. 156), is the probability that
for a random ,
then
(Bailey et al. 1997; Havil 2003, p. 158), where and "Kuzmin" is sometimes also written
as "Kuz'min." The plot above shows the distribution of the first 500 terms
in the continued fractions of , , the Euler-Mascheroni
constant ,
and the Copeland-Erdős constant .
The distribution is properly normalized, since
Babenko, K. I. "On a Problem of Gauss." Soviet Math. Dokl.19, 136-140, 1978.Bailey, D. H.; Borwein,
J. M.; and Crandall, R. E. "On the Khintchine Constant." Math.
Comput.66, 417-431, 1997.Daudé, H.; Flajolet, P.;
and Vallé, B. "An Average-Case Analysis of the Gaussian Algorithm for
Lattice Reduction." Combin. Probab. Comput.6, 397-433, 1997.Durner,
A. "On a Theorem of Gauss-Kuzmin-Lévy." Arch. Math.58,
251-256, 1992.Finch, S. R. "Gauss-Kuzmin-Wirsing Constant."
§2.17 in Mathematical
Constants. Cambridge, England: Cambridge University Press, pp. 151-156,
2003.Havil, J. Gamma:
Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 155-159,
2003.Khinchin, A. Ya. "Gauss's Problem and Kuz'min's Theorem."
§15 in Continued
Fractions. New York: Dover, pp. 71-86, 1997.Knuth, D. E.
The
Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed.
Reading, MA: Addison-Wesley, 1998.Kuz'min, R. O. "A Problem
of Gauss." Dokl. Akad. Nauk, Ser. A, 375-380, 1928.Kuz'min,
R. O. "Sur un problème de Gauss." Anni Congr. Intern. Bologne6,
83-89, 1928.Lévy, P. "Sur les lois de probabilité
dont dependent les quotients complets et incomplets d'une fraction continue."
Bull. Soc. Math. France57, 178-194, 1929.Lévy,
P. "Sur les lois de probabilité dont dependent les quotients complets
et incomplets d'une fraction continue." Bull. Soc. Math. France57,
178-194, 1929.Rockett, A. M. and Szüsz, P. "The Gauss-Kuzmin
Theorem." §5.5 in Continued
Fractions. New York: World Scientific, pp. 151-155, 1992.Wirsing,
E. "On the Theorem of Gauss-Kuzmin-Lévy and a Frobenius-Type Theorem
for Function Spaces." Acta Arith.24, 507-528, 1974.