A generalization of Grassmann coordinates to -D algebraic varieties of degree in , where is an -dimensional projective space. To define the Chow coordinates, take the intersection of an -D algebraic variety of degree by an -D subspace of . Then the coordinates of the points of intersection are algebraic functions of the Grassmann coordinates of , and by taking a symmetric function of the algebraic functions, a homogeneous polynomial known as the Chow form of is obtained. The Chow coordinates are then the coefficients of the Chow form. Chow coordinates can generate the smallest field of definition of a divisor.
Chow Coordinates
See also
Chow Ring, Chow VarietyExplore with Wolfram|Alpha
References
Chow, W.-L. and van der Waerden., B. L. "Zur algebraische Geometrie IX." Math. Ann. 113, 692-704, 1937.Wilson, W. S.; Chern, S. S.; Abhyankar, S. S.; Lang, S.; and Igusa, J.-I. "Wei-Liang Chow." Not. Amer. Math. Soc. 43, 1117-1124, 1996.Referenced on Wolfram|Alpha
Chow CoordinatesCite this as:
Weisstein, Eric W. "Chow Coordinates." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ChowCoordinates.html