TOPICS
Search

Chevalley-Serre Relations


Each Cartan matrix determines a unique semisimple complex Lie algebra via the Chevalley-Serre, sometimes called simply the "Serre relations." That is, if (A_(ij)) is a k×k Cartan matrix then, up to isomorphism, there exists a unique semisimple complex Lie algebra g (whose Cartan matrix is equivalent to (A_(ij))) such that g is defined by a set of 3k generators {e_i,f_i,h_i}_(i=1)^k subject to the following Chevalley-Serre relations:

1. [h_i,h_j]=0

2. [e_i,f_i]=h_i and [e_i,f_j]=0 if i!=j

3. [h_i,e_j]=A_(ij)e_j

4. [h_i,f_j]=-A_(ij)f_j

5. ad(e_i)^(1-A_(ij))(e_j)=0

6. ad(f_i)^(1-A_(ij))(f_j)=0.

Moreover, g has rank k and the h_i's generate a Cartan subalgebra. For proof, see Serre (1987).


See also

Cartan Matrix

This entry contributed by Shawn Westmoreland

Explore with Wolfram|Alpha

References

Fuchs, J. Affine Lie Algebras and Quantum Groups, An Introduction with Applications in Conformal Field Theory. Cambridge, England: Cambridge University Press, pp. 38-39, 1992.Samelson, H. Notes on Lie Algebras. New York: Springer-Verlag, p. 73, 1990.Serre, J. Complex Semisimple Lie Algebras. New York: Springer-Verlag, pp. 48-49 and 52-55, 1987.

Referenced on Wolfram|Alpha

Chevalley-Serre Relations

Cite this as:

Westmoreland, Shawn. "Chevalley-Serre Relations." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/Chevalley-SerreRelations.html

Subject classifications