Biunitary Divisor

A divisor d of a positive integer n is biunitary if the greatest common unitary divisor of d and n/d is 1. For a prime power p^y, the biunitary divisors are the powers 1, p, p^2, ..., p^y, except for p^(y/2) when y is even (Cohen 1990).

See also

Divisor, k-ary Divisor, Unitary Divisor

Explore with Wolfram|Alpha


Cohen, G. L. "On an Integer's Infinitary Divisors." Math. Comput. 54, 395-411, 1990.Suryanarayana, D. "The Number of Bi-Unitary Divisors of an Integer." The Theory of Arithmetic Functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich., 1971. New York: Springer-Verlag, pp. 273-282, 1972.Suryanarayana, D. and Rao, R. S. R. C. "The Number of Bi-Unitary Divisors of an Integer. II." J. Indian Math. Soc. 39, 261-280, 1975.

Referenced on Wolfram|Alpha

Biunitary Divisor

Cite this as:

Weisstein, Eric W. "Biunitary Divisor." From MathWorld--A Wolfram Web Resource.

Subject classifications