TOPICS
Search

Bipolar Coordinates


Bipolar coordinates are a two-dimensional system of coordinates. There are two commonly defined types of bipolar coordinates, the first of which is defined by

x=(asinhv)/(coshv-cosu)
(1)
y=(asinu)/(coshv-cosu),
(2)

where u in [0,2pi), v in (-infty,infty). The following identities show that curves of constant u and v are circles in xy-space.

 x^2+(y-acotu)^2=a^2csc^2u
(3)
 (x-acothv)^2+y^2=a^2csch^2v.
(4)

The scale factors are

h_u=a/(coshv-cosu)
(5)
h_v=a/(coshv-cosu).
(6)

The Laplacian is

 del ^2=((coshv-cosu)^2)/(a^2)((partial^2)/(partialu^2)+(partial^2)/(partialv^2)).
(7)

Laplace's equation is separable.

Two-center bipolar coordinates are two coordinates giving the distances from two fixed centers r_1 and r_2, sometimes denoted r and r^'. For two-center bipolar coordinates with centers at (+/-c,0),

r_1^2=(x+c)^2+y^2
(8)
r_2^2=(x-c)^2+y^2.
(9)

Combining (8) and (9) gives

 r_1^2-r_2^2=4cx.
(10)

Solving for Cartesian coordinates x and y gives

x=(r_1^2-r_2^2)/(4c)
(11)
y=+/-1/(4c)sqrt(16c^2r_1^2-(r_1^2-r_2^2+4c^2)^2).
(12)

Solving for polar coordinates gives

r=sqrt((r_1^2+r_2^2-2c^2)/2)
(13)
theta=tan^(-1)[(sqrt(r_2^4-2(4c^2+r_1^2)r_2^2-(4c^2-r_1^2)^2))/(r_1^2-r_2^2)].
(14)

See also

Bipolar Cylindrical Coordinates, Polar Coordinates

Explore with Wolfram|Alpha

References

Lockwood, E. H. "Bipolar Coordinates." Ch. 25 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 186-190, 1967.

Referenced on Wolfram|Alpha

Bipolar Coordinates

Cite this as:

Weisstein, Eric W. "Bipolar Coordinates." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BipolarCoordinates.html

Subject classifications