A bicolorable graph 
 is a graph with chromatic number 
. A graph is bicolorable iff
 it has no odd graph cycles (König 1950, p. 170;
 Skiena 1990, p. 213; Harary 1994, p. 127). Bicolorable graphs are equivalent
 to bipartite graphs (Skiena 1990, p. 213).
 The numbers of bipartite graphs on 
, 2, ... nodes are 1, 2, 3, 7, 13, 35, 88, 303, ... (OEIS
 A033995). A graph can be tested for being bicolorable
 using BipartiteGraphQ[g],
 and one of its two bipartite sets of vertices can be found using FindIndependentVertexSet[g][[1]].
Bicolorable Graph
See also
Bipartite Graph, Chromatic Number, k-Chromatic Graph, k-Colorable Graph, Three-Colorable GraphExplore with Wolfram|Alpha
References
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.König, D. Theorie der endlichen und unendlichen Graphen. New York: Chelsea, 1950.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.Sloane, N. J. A. Sequence A033995 in "The On-Line Encyclopedia of Integer Sequences."Referenced on Wolfram|Alpha
Bicolorable GraphCite this as:
Weisstein, Eric W. "Bicolorable Graph." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/BicolorableGraph.html