TOPICS
Search

Berger-Kazdan Comparison Theorem


Let M be a compact n-dimensional manifold with injectivity radius inj(M). Then

 Vol(M)>=(c_ninj(M))/pi,

with equality iff M is isometric to the standard round sphere S^n with radius inj(M), where c_n(r) is the volume of the standard n-hypersphere of radius r.


See also

Blaschke Conjecture, Hypersphere, Injection, Isometry

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Chavel, I. Riemannian Geometry: A Modern Introduction. New York: Cambridge University Press, 1994.

Referenced on Wolfram|Alpha

Berger-Kazdan Comparison Theorem

Cite this as:

Weisstein, Eric W. "Berger-Kazdan Comparison Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Berger-KazdanComparisonTheorem.html

Subject classifications