TOPICS
Search

Baby Monster Group


The baby monster group, also known as Fischer's baby monster group, is the second-largest sporadic group. It is denoted B and has group order

|B|=2^(41)·3^(13)·5^6·7^2·11·13·17·19·23·31·47
(1)
=4154781481226426191177580544000000.
(2)

It is implemented in the Wolfram Language as BabyMonsterGroupB[].


See also

Finite Group, Monster Group, Sporadic Group

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A. Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England: Clarendon Press, p. viii, 1985.Wilson, R. A. "ATLAS of Finite Group Representation." http://brauer.maths.qmul.ac.uk/Atlas/v3/spor/BM.

Cite this as:

Weisstein, Eric W. "Baby Monster Group." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/BabyMonsterGroup.html

Subject classifications