TOPICS
Search

Laplace Series


The spherical harmonics form a complete orthogonal system, so an arbitrary real function f(theta,phi) can be expanded in terms of complex spherical harmonics by

 f(theta,phi)=sum_(l=0)^inftysum_(m=0)^lA_l^mY_l^m(theta,phi),
(1)

or in terms of real spherical harmonics by

 f(theta,phi)=sum_(l=0)^inftysum_(m=0)^l[C_l^mY_l^m^c(theta,phi)+S_l^mY_l^m^s(theta,phi)].
(2)

The representation of a function f(theta,phi) as such a double series is a generalized Fourier series known as a Laplace series.

The process of determining the coefficients A_l^m in (1) is analogous to that of determining the coefficients in a Fourier series, i.e., multiply both sides of (1) by Y^__(l^')^(m^')(theta,phi), integrate, and use the orthogonality relationship (◇) to obtain

 int_0^(2pi)int_0^pif(theta,phi)Y^__(l^')^(m^')(theta,phi)sinthetadthetadphi 
=sum_(l=0)^inftysum_(m=0)^lint_0^(2pi)int_0^piA_l^mY_l^m(theta,phi)Y^__(l^')^(m^')(theta,phi)sinthetadthetadphi 
=sum_(l=0)^inftysum_(m=0)^lA_l^mdelta_(ll^')delta_(mm^') 
=A_l^m.
(3)

The following sequence of plots shows successive approximations to the function f(theta,phi)=3+cos^3(2theta)+(sinphi)/2, which is illustrated in the final plot.

SphericalHarmonicSeries

Laplace series can also be written in terms real spherical harmonic as

 f(theta,phi)=sum_(l=0)^inftysum_(m=0)^l[C_l^mcos(mphi)+S_l^msin(mphi)]P_l^m(costheta).
(4)

Proceed as before, using the orthogonality relationships

 int_0^(2pi)int_0^piP_l^m(costheta)cos(mphi)P_(l^')^(m^')(costheta)cos(m^'phi)sin(theta)dthetadphi 
=-(2pi(l+m)!)/((2l+1)(l-m)!)delta_(mm^')delta_(ll^') 
int_0^(2pi)int_0^piP_l^m(costheta)sin(mphi)P_(l^')^(m^')(costheta)sin(m^'phi)sinthetadthetadphi 
=-(2pi(l+m)!)/((2l+1)(l-m)!)delta_(mm^')delta_(ll^').
(5)

So C_l^m and S_l^m are given by

C_l^m=-((2l+1)(l-m)!)/(2pi(l+m)!)int_0^(2pi)int_0^pif(theta,phi)P_l^mcosthetacos(mphi)sinthetadthetadphi
(6)
S_l^m=-((2l+1)(l-m)!)/(2pi(l+m)!)int_0^(2pi)int_0^pif(theta,phi)P_l^mcosthetasin(mphi)sinthetadthetadphi.
(7)

See also

Complete Orthogonal System, Fourier-Legendre Series, Fourier Series, Generalized Fourier Series, Spherical Harmonic

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Laplace Series." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LaplaceSeries.html

Subject classifications