|
|
Ramsey Number
The Ramsey number gives the solution to the party
problem, which asks the minimum number of guests that must
be invited so that at least will know each
other or at least will not know each other. In the language
of graph theory, the Ramsey number is the minimum
number of vertices such that all undirected simple
graphs of order contain a clique
of order or an independent
set of order . Ramsey's
theorem states that such a number exists for all and .
By symmetry, it is true that
 |
(1)
|
It also must be true that
 |
(2)
|
A generalized Ramsey number is written
 |
(3)
|
and is the smallest integer such that, no matter
how each -element subset
of an -element set is
colored with colors, there exists an such that there
is a subset of size , all of whose
-element subsets are
color . The usual Ramsey numbers are then equivalent
to .
Bounds are given by
 |
(4)
|
and
 |
(5)
|
(Chung and Grinstead 1983). Erdős proved that for diagonal Ramsey numbers ,
 |
(6)
|
This result was subsequently improved by a factor of 2 by Spencer (1975). was known
since 1980 to be bounded from above by , and
Griggs (1983) showed that was an
acceptable limit. J.-H. Kim (Cipra 1995) subsequently bounded by a similar
expression from below, so
 |
(7)
|
Burr (1983) gives Ramsey numbers for all 113 graphs with no more than 6 graph
edges and no isolated points.
A summary of known results up to 1983 for is given
in Chung and Grinstead (1983). Radziszowski (2004) maintains an up-to-date list of
the best current bounds. Results from Tables I and II of Radziszowski (2004) are
reproduced below in a slightly less cramped format than in the original. Known bounds
for generalized Ramsey numbers (multicolor graph numbers), hypergraph Ramsey numbers,
and many other types of Ramsey numbers may be found in Radziszowski (2004). In the
absence of a published upper bound, the theorem of Erdős-Szekeres stating that
is used to provide one.
 |  |  | Reference | | 3 | 3 | 6 | Greenwood and Gleason 1955 | | 3 | 4 | 9 | Greenwood and Gleason
1955 | | 3 | 5 | 14 | Greenwood and Gleason 1955 | | 3 | 6 | 18 | Graver
and Yackel 1968 | | 3 | 7 | 23 | Kalbfleisch 1966 | | 3 | 8 | 28 | McKay
and Min 1992 | | 3 | 9 | 36 | Grinstead and Roberts 1982 | | 3 | 10 | [40, 43] | Exoo
1989c, Radziszowski and Kreher 1988 | | 3 | 11 | [46, 51] | Radziszowski
and Kreher 1988 | | 3 | 12 | [52, 59] | Exoo 1993, Radziszowski and Kreher 1988,
Exoo 1998, Lesser 2001 | | 3 | 13 | [59, 69] | Piwakowski 1996, Radziszowski and Kreher
1988 | | 3 | 14 | [66, 78] | Exoo (unpub.), Radziszowski and Kreher
1988 | | 3 | 15 | [73, 88] | Wang and Wang 1989, Radziszowski (unpub.),
Lesser 2001 | | 3 | 16 | [79, 135] | Wang and Wang 1989 | | 3 | 17 | [92, 152] | Wang et al. 1994 | | 3 | 18 | [98, 170] | Wang et al.
1994 | | 3 | 19 | [106, 189] | Wang et al. 1994 | | 3 | 20 | [109, 209] | Wang et al. 1994 | | 3 | 21 | [122, 230] | Wang et al.
1994 | | 3 | 22 | [125, 252] | Wang et al. 1994 | | 3 | 23 | [136, 275] | Wang et al. 1994 | | 4 | 4 | 18 | Greenwood and Gleason
1955 | | 4 | 5 | 25 | McKay and Radziszowski 1995 | | 4 | 6 | [35, 41] | Exoo
(unpub.), McKay and Radziszowski 1995 | | 4 | 7 | [49, 61] | Exoo 1989a, Mackey
1994 | | 4 | 8 | [56, 84] | Exoo 1998, Exoo 2002 | | 4 | 9 | [73, 115] | Radziszowski
1988, Mackey 1994 | | 4 | 10 | [92, 149] | Piwakowski 1996, Mackey 1994, Harboth
and Krause 2003 | | 4 | 11 | [97, 191] | Piwakowski 1996, Spencer 1994, Burr
et al. 1989 | | 4 | 12 | [128, 238] | Su et al. 1998, Spencer 1994 | | 4 | 13 | [133,
291] | Xu and Xie 2002 | | 4 | 14 | [141, 349] | Xu and Xie
2002 | | 4 | 15 | [153, 417] | Xu and Xie 2002 | | 4 | 16 | [153, 815] | | | 4 | 17 | [182, 968] | Luo et al. 2001 | | 4 | 18 | [182, 1139] | | | 4 | 19 | [198, 1329] | Luo et al. 2002 | | 4 | 20 | [230, 1539] | Su et al. 1999 | | 4 | 21 | [242, 1770] | Su et al.
1999 | | 4 | 22 | [282, 2023] | Su et al. 1999 | | 5 | 5 | [43, 49] | Exoo
1989b, McKay and Radziszowski 1995 | | 5 | 6 | [58, 87] | Exoo 1993, Walker
1971 | | 5 | 7 | [80, 143] | CET, Spencer 1994 | | 5 | 8 | [101, 216] | Piwakowski 1996, Spencer 1994, Harborth and Krause 2003 | | 5 | 9 | [125,
316] | Exoo 1998, Haanpää 2000 | | 5 | 10 | [143, 442] | Exoo 1998, Mackey 1994 | | 5 | 11 | [157, 1000] | Exoo 1998,
Xiaodong et al. 2004 | | 5 | 12 | [181, 1364] | Exoo 1998 | | 5 | 13 | [205, 1819] | Exoo 1998, Xiaodong et al. 2004 | | 5 | 14 | [233, 2379] | Exoo 1998,
Xiaodong et al. 2004 | | 5 | 15 | [261, 3059] | Su et al. 2002, Xiaodong et al. 2004 | | 5 | 16 | [278,
3875] | Luo et al. 2001 | | 5 | 17 | [284, 4844] | Exoo 2002 | | 5 | 18 | [284,
5984] | | | 5 | 19 | [338, 7314] | Su et al. 1999 | | 5 | 20 | [380, 8854] | Luo et al. 2001 | | 5 | 21 | [380, 10625] | | | 5 | 22 | [422,
12649] | Luo et al. 2000 | | 5 | 23 | [434, 14949] | Luo et al.
2000 | | 5 | 24 | [434, 17549] | | | 5 | 25 | [434, 20474] | | | 5 | 26 | [464,
23750] | | | 6 | 6 | [102, 165] | Kalbfleisch 1965, Mackey 1994 | | 6 | 7 | [113,
298] | Exoo 1998, Xu and Xie 2002 | | 6 | 8 | [127, 495] | Exoo 1998, Xu and Xie 2002 | | 6 | 9 | [169, 780] | Exoo 1998,
Mackey 1994, Xiaodong et al. 2004 | | 6 | 10 | [179, 1171] | Xu and Xie
2002 | | 6 | 11 | [253, 3002] | Xu and Xie 2002 | | 6 | 12 | [262, 4367] | Xu and Xie 2002 | | 6 | 13 | [317, 6187] | Xu and Xie
2002, Xiaodong et al. 2004 | | 6 | 14 | [317, 8567] | Xu and Xie
2002 | | 6 | 15 | [401, 11627] | Su et al. 2002, Xiaodong et al. 2004 | | 6 | 16 | [434,
15503] | Su et al. 2002 | | 6 | 17 | [548, 20348] | Su et al.
2002 | | 6 | 18 | [614, 26333] | Su et al. 2002 | | 6 | 19 | [710, 33648] | Su et al. 2002 | | 6 | 20 | [878, 42503] | Su et al.
2002 | | 6 | 21 | [878, 53129] | | | 6 | 22 | [1070, 65779] | Su et al.
2002 | | 7 | 7 | [205, 540] | Hill and Irving 1982, Giraud 1973 | | 7 | 8 | [216,
1031] | Xu and Xie 2002 | | 7 | 9 | [233, 1713] | Huang and
Zhang 1998, Xiaodong and Zheng 2002 | | 7 | 10 | [232, 2826] | Mackey 1994 | | 7 | 11 | [405,
8007] | Xu and Xie 2002, Xiaodong and Zheng 2002 | | 7 | 12 | [416,
12375] | Xu and Xie 2002 | | 7 | 13 | [511, 18563] | Xu and Xie
2002 | | 7 | 14 | [511, 27131] | | | 7 | 15 | [511, 38759] | | | 7 | 16 | [511,
54263] | | | 7 | 17 | [628, 74612] | Xu and Xie 2002 | | 7 | 18 | [722, 100946] | Xu and Xie 2002 | | 7 | 19 | [908, 134595] | Su et al.
2002 | | 7 | 20 | [908, 177099] | | | 7 | 21 | [1214, 230229] | Su et
al. 2002 | | 8 | 8 | [282, 1870] | Burling and Reyner 1972, Mackey 1994 | | 8 | 9 | [317,
3583] | Radziszowski 2002, Xiaodong et al. 2004 | | 8 | 10 | [377, 6090] | Xu and Xie 2002, Huang and Zhang 1998, Xiaodong et al. 2004 | | 8 | 11 | [377,
19447] | | | 8 | 12 | [377, 31823] | | | 8 | 13 | [817, 50387] | Xu and Xie
2002, Xiaodong et al. 2004 | | 8 | 14 | [817, 77519] | | | 8 | 15 | [861,
116279] | Xu and Xie 2002, Xiaodong et al. 2004 | | 8 | 16 | [861, 170543] | | | 8 | 17 | [861, 245156] | Xu and Xie 2002 | | 8 | 18 | [871, 346103] | Xu and Xie 2002 | | 8 | 19 | [1054, 480699] | Xu and
Xie 2002 | | 8 | 20 | [1094, 657799] | Su et al. 2002 | | 8 | 21 | [1328, 888029] | Su et al. 2002 | | 9 | 9 | [565, 6588] | Shearer 1986,
Shi and Zheng 2001 | | 9 | 10 | [580, 12677] | Xu and Xie 2002 | | 10 | 10 | [798, 23556] | Shearer 1986, Shi 2002 | | 11 | 11 | [1597, 184755] | Mathon
1987 | | 12 | 12 | [1637, 705431] | Xu and Xie 2002 | | 13 | 13 | [2557, 2704155] | Mathon 1987 | | 14 | 14 | [2989, 10400599] | Mathon 1987 | | 15 | 15 | [5485, 40116599] | Mathon 1987 | | 16 | 16 | [5605, 155117519] | Mathon 1987 | | 17 | 17 | [8917, 601080389] | Luo et al. 2002 | | 18 | 18 | [11005, 2333606219] | Luo
et al. 2002 | | 19 | 19 | [17885, 9075135299] | Luo et al. 2002 |
SEE ALSO: Clique, Clique Number, Complete Graph, Extremal
Graph, Independence Number, Independent
Set, Irredundant Ramsey Number, Ramsey's Theorem, Ramsey
Theory, Schur Number
REFERENCES:
Burling, J. P. and Reyner, S. W. "Some Lower Bounds of the Ramsey Numbers ." J. Combin. Th. Ser. B 13,
168-169, 1972.
Burr, S. A. "Generalized Ramsey Theory for Graphs--A Survey." In Graphs and Combinatorics (Ed. R. A. Bari and F. Harary). New York: Springer-Verlag,
pp. 52-75, 1974.
Burr, S. A. "Diagonal Ramsey Numbers for Small Graphs." J. Graph
Th. 7, 57-69, 1983.
Burr, S. A.; Erdős, P.; Faudree, R. J.; and Schelp, R. H. "On the Difference between Consecutive Ramsey Numbers." Util. Math. 35,
115-118, 1989.
Chartrand, G. "The Problem of the Eccentric Hosts: An Introduction to Ramsey Numbers." §5.1 in Introductory
Graph Theory. New York: Dover, pp. 108-115, 1985.
Chung, F. R. K. "On the Ramsey Numbers ."
Discrete Math. 5, 317-321, 1973.
Chung, F. and Grinstead, C. G. "A Survey of Bounds for Classical Ramsey
Numbers." J. Graph. Th. 7, 25-37, 1983.
Cipra, B. "A Visit to Asymptopia Yields Insights into Set Structures."
Science 267, 964-965, 1995.
Exoo, G. "Applying Optimization Algorithm to Ramsey Problems." In Graph
Theory, Combinatorics, Algorithms, and Applications (Ed. Y. Alavi).
Philadelphia: SIAM, pp. 175-179, 1989a.
Exoo, G. "A Lower Bound for ." J.
Graph Th. 13, 97-98, 1989.
Exoo, G. "On Two Classical Ramsey Numbers of the Form ." SIAM
J. Discrete Math. 2, 488-490, 1989c.
Exoo, G. "Announcement: On the Ramsey Numbers , and ." Ars Combin. 35, 85,
1993.
Exoo, G. "A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers of ." Electronic J. Combinatorics 1,
No. 1, R8, 1-3, 1994. http://www.combinatorics.org/Volume_1/Abstracts/v1i1r8.html.
Exoo, G. "Some New Ramsey Colorings." Electronic J. Combinatorics 5,
No. 1, R29, 1-5, 1998. http://www.combinatorics.org/Volume_5/Abstracts/v5i1r29.html.
Exoo, G. "Some Applications of -Groups in Graph
Theory." Preprint. 2002.
Folkmann, J. "Notes on the Ramsey Number ."
J. Combinat. Theory. Ser. A 16, 371-379, 1974.
Fredricksen, H. "Schur Numbers and the Ramsey Numbers ."
J. Combin. Theory Ser. A 27, 376-377, 1979.
Gardner, M. "Mathematical Games: In Which Joining Sets of Points by Lines Leads
into Diverse (and Diverting) Paths." Sci. Amer. 237, 18-28, 1977.
Gardner, M. Penrose Tiles and Trapdoor Ciphers... and the Return of Dr. Matrix, reissue ed.
New York: W. H. Freeman, pp. 240-241, 1989.
Giraud, G. "Une minoration du nombre de quadrangles unicolores et son application a la majoration des nombres de Ramsey binaires bicolors." C. R. Acad. Sci.
Paris A 276, 1173-1175, 1973.
Graham, R. L.; Rothschild, B. L.; and Spencer, J. H. Ramsey
Theory, 2nd ed. New York: Wiley, 1990.
Graver, J. E. and Yackel, J. "Some Graph Theoretic Results Associated with
Ramsey's Theorem." J. Combin. Th. 4, 125-175, 1968.
Greenwood, R. E. and Gleason, A. M. "Combinatorial Relations and Chromatic
Graphs." Canad. J. Math. 7, 1-7, 1955.
Griggs, J. R. "An Upper Bound on the Ramsey Numbers ." J.
Comb. Th. A 35, 145-153, 1983.
Grinstead, C. M. and Roberts, S. M. "On the Ramsey Numbers and ." J. Combinat. Th. Ser. B 33,
27-51, 1982.
Guldan, F. and Tomasta, P. "New Lower Bounds of Some Diagonal Ramsey Numbers."
J. Graph. Th. 7, 149-151, 1983.
Haanpää, H. "A Lower Bound for a Ramsey Number." Congr. Numer. 144,
189-191, 2000.
Hanson, D. "Sum-Free Sets and Ramsey Numbers." Discrete Math. 14,
57-61, 1976.
Harary, F. "Recent Results on Generalized Ramsey Theory for Graphs." In Graph
Theory and Applications: Proceedings of the Conference at Western Michigan University,
Kalamazoo, Mich., May 10-13, 1972 (Ed. Y. Alavi, D. R. Lick,
and A. T. White). New York: Springer-Verlag, pp. 125-138, 1972.
Harborth, H. and Krause, S. "Ramsey Numbers for Circulant Colorings." Congr.
Numer. 161, 139-150, 2003.
Hill, R. and Irving, R. W. "On Group Partitions Associated with Lower Bounds
for Symmetric Ramsey Numbers." European J. Combin. 3, 35-50, 1982.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical
Truth. New York: Hyperion, pp. 52-53, 1998.
Huang, Y. R. and Zhang, K. M. "An New Upper Bound Formula for Two Color Classical Ramsey Numbers." J. Combin. Math. Combin. Comput. 28,
347-350, 1998.
Kalbfleisch, J. G. Chromatic Graphs and Ramsey's Theorem. Ph.D. thesis,
University of Waterloo, January 1966.
Lesser, A. "Theoretical and Computational Aspects of Ramsey Theory." Examensarbeten
i Matematik, Matematiska Institutionen, Stockholms Universitet 3, 2001.
Luo, H.; Su, W.; and Li, Z. "The Properties of Self-Complementary Graphs and New Lower Bounds for Diagonal Ramsey Numbers." Australasian J. Combin. 25,
103-116, 2002.
Luo, H.; Su, W.; and Shen, Y.-Q. "New Lower Bounds of Ten Classical Ramsey Numbers."
Australasian J. Combin. 24, 81-90, 2001.
Luo, H.; Su, W.; Zhang, Z.; and Li, G. "New Lower Bounds for Twelve Classical 2-Color Ramsey Numbers ." Guangxi Sci. 7,
120-121, 2000.
Mackey, J. Combinatorial Remedies. Ph.D. thesis. Department of Mathematics,
University of Hawaii, 1994.
Mathon, R. "Lower Bounds for Ramsey Numbers and Association Schemes." J.
Combin. Th. Ser. B 42, 122-127, 1987.
McKay, B. D. and Min, Z. K. "The Value of the Ramsey Number ." J.
Graph Th. 16, 99-105, 1992.
McKay, B. D. and Radziszowski, S. P. " ."
J. Graph. Th 19, 309-322, 1995.
Piwakowski, K. "Applying Tabu Search to Determine New Ramsey Numbers."
Electronic J. Combinatorics 3, No. 1, R6, 1-4, 1996. http://www.combinatorics.org/Volume_3/Abstracts/v3i1r6.html.
Radziszowski, S. P. "Small Ramsey Numbers." Electronic J. Combinatorics
Dynamical Survey DS1, 1-42, Jul. 4, 2004. http://www.combinatorics.org/Surveys/#DS1.
Radziszowski, S. and Kreher, D. L. "Search Algorithm for Ramsey Graphs
by Union of Group Orbits." J. Graph Th. 12, 59-72, 1988a.
Radziszowski, S. and Kreher, D. L. "Upper Bounds for Some Ramsey Numbers ." J. Combinat. Math. Combin. Comput. 4,
207-212, 1988b.
Robertson, A. "New Lower Bounds for Some Multicolored Ramsey Numbers."
Electronic J. Combinatorics 6, No. 1, R3, 1-6, 1999. http://www.combinatorics.org/Volume_6/Abstracts/v6i1r3.html.
Shearer, J. B. "Lower Bounds for Small Diagonal Ramsey Numbers." J.
Combin. Th. Ser. A 42, 302-304, 1986.
Shi, L. S. "Upper Bounds for Ramsey Numbers." Preprint. 2002.
Shi, L. S. and Zhang, K. M. "An Upper Bound Formula for Ramsey Numbers" Preprint. 2001.
Spencer, J. H. "Ramsey's Theorem--A New Lower Bound." J. Combinat.
Theory Ser. A 18, 108-115, 1975.
Spencer, T. "Upper Bounds for Ramsey Numbers via Linear Programming." Preprint. 1994.
Su, W.; Luo, H.; Li, G.; and Li, Q. "Lower Bounds of Ramsey Numbers Based on
Cubic Residues." Disc. Math. 250, 197-209, 2002.
Su, W.; Luo, H.; Li, G.; and Li, Q. "New Lower Bounds of Classical Ramsey Numbers , , and ." Chinese Sci. Bull. 43,
528, 1998.
Su, W.; Luo, H.; Zhang, Z.; and Li, G. "New Lower Bounds of Fifteen Classical
Ramsey Numbers." Australasian J. Combin. 19, 91-99, 1999.
Wang, Q. and Wang, G. "New Lower Bounds for the Ramsey Numbers ." Beijing
Daxue Xuebao 25, 117-121, 1989.
Wang, Q.; Wang, G.; and Yan, S. "A Search Algorithm and New Lower Bounds for Ramsey Numbers ." Preprint. 1994.
Whitehead, E. G. "The Ramsey Number ."
Discrete Math. 4, 389-396, 1973.
Xiaodong, X. and Zheng, X. "A Constructive Approach for the Lower Bounds on the Ramsey Numbers ." Unpublished manuscript,
2002.
Xiaodong, X.; Zheng, X.; Exoo, G.; and Radziszowski, S. P. "Constructive Lower Bounds on Classical Multicolor Ramsey Numbers." Elec. J. Combin. 11,
2004. http://www.combinatorics.org/Volume_11/PDF/v11i1r35.pdf.
Referenced on Wolfram|Alpha: Ramsey Number
CITE THIS AS:
Weisstein, Eric W. "Ramsey Number." From
MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RamseyNumber.html
Wolfram Web Resources
|
Mathematica »
The #1 tool for creating Demonstrations and anything technical.
|
Wolfram|Alpha »
Explore anything with the first computational knowledge engine.
|
Wolfram Demonstrations Project »
Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.
|
|
Computerbasedmath.org »
Join the initiative for modernizing math education.
|
Online Integral Calculator »
Solve integrals with Wolfram|Alpha.
|
Step-by-step Solutions »
Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.
|
|
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
|
Wolfram Education Portal »
Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.
|
Wolfram Language »
Knowledge-based programming for everyone.
|
|
|