Ramsey Number

DOWNLOAD Mathematica Notebook

The Ramsey number R(m,n) gives the solution to the party problem, which asks the minimum number of guests R(m,n) that must be invited so that at least m will know each other or at least n will not know each other. In the language of graph theory, the Ramsey number is the minimum number of vertices v=R(m,n) such that all undirected simple graphs of order v contain a clique of order m or an independent set of order n. Ramsey's theorem states that such a number exists for all m and n.

By symmetry, it is true that

 R(m,n)=R(n,m).
(1)

It also must be true that

 R(m,2)=m.
(2)

A generalized Ramsey number is written

 R(m_1,...,m_k;n)
(3)

and is the smallest integer r such that, no matter how each n-element subset of an r-element set is colored with k colors, there exists an i such that there is a subset of size m_i, all of whose n-element subsets are color i. The usual Ramsey numbers are then equivalent to R(m,n)=R(m,n;2).

Bounds are given by

 R(k,l)<={R(k-1,l)+R(k,l-1)-1   for  R(k-1,l)  and  R(k,l-1)  even; R(k-1,l)+R(k,l-1)   otherwise
(4)

and

 R(k,k)<=4R(k-2,k)+2
(5)

(Chung and Grinstead 1983). Erdős proved that for diagonal Ramsey numbers R(k,k),

 (k2^(k/2))/(esqrt(2))<R(k,k).
(6)

This result was subsequently improved by a factor of 2 by Spencer (1975). R(3,k) was known since 1980 to be bounded from above by c_2k^2/lnk, and Griggs (1983) showed that c_2=5/12 was an acceptable limit. J.-H. Kim (Cipra 1995) subsequently bounded R(3,k) by a similar expression from below, so

 c_1(k^2)/(lnk)<=R(3,k)<=c_2(k^2)/(lnk).
(7)

Burr (1983) gives Ramsey numbers for all 113 graphs with no more than 6 graph edges and no isolated points.

A summary of known results up to 1983 for R(m,n) is given in Chung and Grinstead (1983). Radziszowski (2004) maintains an up-to-date list of the best current bounds. Results from Tables I and II of Radziszowski (2004) are reproduced below in a slightly less cramped format than in the original. Known bounds for generalized Ramsey numbers (multicolor graph numbers), hypergraph Ramsey numbers, and many other types of Ramsey numbers may be found in Radziszowski (2004). In the absence of a published upper bound, the theorem of Erdős-Szekeres stating that R(k,l)<(k+l-2; l-1) is used to provide one.

mnR(m,n)Reference
336Greenwood and Gleason 1955
349Greenwood and Gleason 1955
3514Greenwood and Gleason 1955
3618Graver and Yackel 1968
3723Kalbfleisch 1966
3828McKay and Min 1992
3936Grinstead and Roberts 1982
310[40, 43]Exoo 1989c, Radziszowski and Kreher 1988
311[46, 51]Radziszowski and Kreher 1988
312[52, 59]Exoo 1993, Radziszowski and Kreher 1988, Exoo 1998, Lesser 2001
313[59, 69]Piwakowski 1996, Radziszowski and Kreher 1988
314[66, 78]Exoo (unpub.), Radziszowski and Kreher 1988
315[73, 88]Wang and Wang 1989, Radziszowski (unpub.), Lesser 2001
316[79, 135]Wang and Wang 1989
317[92, 152]Wang et al. 1994
318[98, 170]Wang et al. 1994
319[106, 189]Wang et al. 1994
320[109, 209]Wang et al. 1994
321[122, 230]Wang et al. 1994
322[125, 252]Wang et al. 1994
323[136, 275]Wang et al. 1994
4418Greenwood and Gleason 1955
4525McKay and Radziszowski 1995
46[35, 41]Exoo (unpub.), McKay and Radziszowski 1995
47[49, 61]Exoo 1989a, Mackey 1994
48[56, 84]Exoo 1998, Exoo 2002
49[73, 115]Radziszowski 1988, Mackey 1994
410[92, 149]Piwakowski 1996, Mackey 1994, Harboth and Krause 2003
411[97, 191]Piwakowski 1996, Spencer 1994, Burr et al. 1989
412[128, 238]Su et al. 1998, Spencer 1994
413[133, 291]Xu and Xie 2002
414[141, 349]Xu and Xie 2002
415[153, 417]Xu and Xie 2002
416[153, 815]
417[182, 968]Luo et al. 2001
418[182, 1139]
419[198, 1329]Luo et al. 2002
420[230, 1539]Su et al. 1999
421[242, 1770]Su et al. 1999
422[282, 2023]Su et al. 1999
55[43, 49]Exoo 1989b, McKay and Radziszowski 1995
56[58, 87]Exoo 1993, Walker 1971
57[80, 143]CET, Spencer 1994
58[101, 216]Piwakowski 1996, Spencer 1994, Harborth and Krause 2003
59[125, 316]Exoo 1998, Haanpää 2000
510[143, 442]Exoo 1998, Mackey 1994
511[157, 1000]Exoo 1998, Xiaodong et al. 2004
512[181, 1364]Exoo 1998
513[205, 1819]Exoo 1998, Xiaodong et al. 2004
514[233, 2379]Exoo 1998, Xiaodong et al. 2004
515[261, 3059]Su et al. 2002, Xiaodong et al. 2004
516[278, 3875]Luo et al. 2001
517[284, 4844]Exoo 2002
518[284, 5984]
519[338, 7314]Su et al. 1999
520[380, 8854]Luo et al. 2001
521[380, 10625]
522[422, 12649]Luo et al. 2000
523[434, 14949]Luo et al. 2000
524[434, 17549]
525[434, 20474]
526[464, 23750]
66[102, 165]Kalbfleisch 1965, Mackey 1994
67[113, 298]Exoo 1998, Xu and Xie 2002
68[127, 495]Exoo 1998, Xu and Xie 2002
69[169, 780]Exoo 1998, Mackey 1994, Xiaodong et al. 2004
610[179, 1171]Xu and Xie 2002
611[253, 3002]Xu and Xie 2002
612[262, 4367]Xu and Xie 2002
613[317, 6187]Xu and Xie 2002, Xiaodong et al. 2004
614[317, 8567]Xu and Xie 2002
615[401, 11627]Su et al. 2002, Xiaodong et al. 2004
616[434, 15503]Su et al. 2002
617[548, 20348]Su et al. 2002
618[614, 26333]Su et al. 2002
619[710, 33648]Su et al. 2002
620[878, 42503]Su et al. 2002
621[878, 53129]
622[1070, 65779]Su et al. 2002
77[205, 540]Hill and Irving 1982, Giraud 1973
78[216, 1031]Xu and Xie 2002
79[233, 1713]Huang and Zhang 1998, Xiaodong and Zheng 2002
710[232, 2826]Mackey 1994
711[405, 8007]Xu and Xie 2002, Xiaodong and Zheng 2002
712[416, 12375]Xu and Xie 2002
713[511, 18563]Xu and Xie 2002
714[511, 27131]
715[511, 38759]
716[511, 54263]
717[628, 74612]Xu and Xie 2002
718[722, 100946]Xu and Xie 2002
719[908, 134595]Su et al. 2002
720[908, 177099]
721[1214, 230229]Su et al. 2002
88[282, 1870]Burling and Reyner 1972, Mackey 1994
89[317, 3583]Radziszowski 2002, Xiaodong et al. 2004
810[377, 6090]Xu and Xie 2002, Huang and Zhang 1998, Xiaodong et al. 2004
811[377, 19447]
812[377, 31823]
813[817, 50387]Xu and Xie 2002, Xiaodong et al. 2004
814[817, 77519]
815[861, 116279]Xu and Xie 2002, Xiaodong et al. 2004
816[861, 170543]
817[861, 245156]Xu and Xie 2002
818[871, 346103]Xu and Xie 2002
819[1054, 480699]Xu and Xie 2002
820[1094, 657799]Su et al. 2002
821[1328, 888029]Su et al. 2002
99[565, 6588]Shearer 1986, Shi and Zheng 2001
910[580, 12677]Xu and Xie 2002
1010[798, 23556]Shearer 1986, Shi 2002
1111[1597, 184755]Mathon 1987
1212[1637, 705431]Xu and Xie 2002
1313[2557, 2704155]Mathon 1987
1414[2989, 10400599]Mathon 1987
1515[5485, 40116599]Mathon 1987
1616[5605, 155117519]Mathon 1987
1717[8917, 601080389]Luo et al. 2002
1818[11005, 2333606219]Luo et al. 2002
1919[17885, 9075135299]Luo et al. 2002

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.